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1 License, availability and use

1.1 License

These lecture notes are copyrighted by Michael Creel with the date that appears above.

The are provided under the terms of the GNU General Public License, which forms

Section 25 of the notes. The main thing you need to know is that you are free to modify

and distribute these notes in any way you like, as long as you do so under the terms of

the GPL. In particular, you must provide the source code for your version of the notes.

1.2 Obtaining the notes

These notes are part of the OMEGA (Open-source Materials for Econometrics, GPL

Archive) project at http://pareto.uab.es/omega. They were prepared using LYX

(http://www.lyx.org). LYX is an open source “what you see is what you mean”

word processor. It can export your work in TEX, HTML, PDF and several other forms.

It will run on Unix, Windows, and MacOS systems. The source code is the LYX file

notes.lyx, which is available at http://pareto.uab.es/omega/Project_001/.

There you will find the LYX source file, as well as PDF, HTML, TEX and zipped

HTML versions of the notes.

1.3 Use

You are free to use the notes as you like, for study, preparing a course, etc. I find

that a hard copy is of most use for lecturing or study, while the html version is useful

for quick reference or answering students’ questions in office hours. I would greatly

appreciate that you inform me of any errors you find. I’d also welcome contributions

in any area, especially in the areas of time series and nonstationary data.
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2 Economic and econometric models

A model from economic theory:

xi = xi(pi,mi,zi)

• xi is G×1 vector of quantities demanded

• pi is G×1 vector of prices

• mi is income

• zi is a vector of individual characteristics related to preferences

Suppose a sample of one observation of n individuals’ demands at time period t (this

is a cross section). The model is not estimable as it stands.

• The form of the demand function is different for all i.

• Some components of zi are subject to fluctuations that are not observable to

outside modeler (people don’t eat the same lunch every day). Break zi into the

observable components wi and an unobservable component εi.

An estimable (e.g., econometric) model is

xi = β0 + p′iβp +miβm +w′
iβw + εi

We have imposed a number of restrictions on the theoretical model:

• The functions xi(·) which may differ for all i have been restricted to all belong

to the same parametric family.
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• Of all parametric families of functions, we have restricted the model to the class

of linear in the variables functions.

These are very strong restrictions, compared to the theoretical model. Furthermore,

these restrictions have no theoretical basis. The validity of any results we obtain

using this model will be contingent on these restrictions being correct. For this reason,

specification testing will be needed, to check that the model seems to be reasonable.

Only when we are convinced that the model is at least approximately correct should we

use it for economic analysis. In the next sections we will obtain results supposing that

the econometric model is correctly specified. Later we will examine the consequences

of misspecification and see some methods for determining if a model is correctly spec-

ified.
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3 Ordinary Least Squares

3.1 The classical linear model

The classical linear model is based upon several assumptions.

1. Linearity: the model is a linear function of the parameter vector β0 :

yt = x′tβ0 + εt ,

or in matrix form,

y = Xβ0 + ε,

where y is n×1, X =

(
x1 x2 · · · xn

)′
, where xt is K ×1, and β0 and ε are

conformable. The subscript “0” in β0 means this is the true value of the unknown

parameter. It will be suppressed when it’s not necessary for clarity. Linear

models are more general than they might first appear, since one can employ

nonlinear transformations of the variables:

ϕ0(zt) =

[
ϕ1(wt) ϕ2(wt) · · · ϕp(wt)

]
β0 + εt

(The φi() are known functions). Defining yt = ϕ0(zt), xt1 = ϕ1(wt), etc. leads to

a model in the form of equation (??). For example, the Cobb-Douglas model

z = Awβ2
2 wβ3

3 exp(ε)

can be transformed logarithmically to obtain

lnz = lnA+β2 lnw2 +β3 lnw3 + ε.

13



2. IID mean zero errors:

E(ε) = 0

Var(ε) = E(εε′) = σ2
0In

3. Nonstochastic, linearly independent regressors

(a) X has rank K

(b) X is nonstochastic

(c) limn→∞
1
nX ′X = QX , a finite positive definite matrix.

4. Normality (Optional): ε is normally distributed

3.2 Estimation by least squares

The objective is to gain information about the unknown parameters β0and σ2
0.

β̂ = argmins(β) =
n

∑
t=1

(
yt − x′tβ

)2

s(β) = (y−Xβ)′ (y−Xβ)

= y′y−2y′Xβ+β′X ′Xβ

= ‖ y−Xβ ‖2

This last expression makes it clear how the OLS estimator chooses β̂ : it minimizes the

Euclidean distance between y and Xβ.

• To minimize the criterion s(β), take the f.o.n.c. and set them to zero:

Dβs(β̂) = −2X ′y+2X ′X β̂ = 0

14



so

β̂ = (X ′X)−1X ′y.

• To verify that this is a minimum, check the s.o.s.c.:

D2
βs(β̂) = 2X ′X

Since ρ(X) = K, this matrix is positive definite, since it’s a quadratic form in a

p.d. matrix (identity matrix of order n), so β̂ is in fact a minimizer.

• The fitted values are in the vector ŷ = X β̂.

• The residuals are in the vector ε̂ = y−X β̂

• Note that

y = Xβ+ ε

= X β̂+ ε̂

3.3 Estimating the error variance

The OLS estimator of σ2
0 is

σ̂2
0 =

1
n−K

ε̂′ε̂

3.4 Geometric interpretation of least squares estimation

3.4.1 In X ,Y Space

Do a plot with the true line, observations and the estimated line. Note the impact of

outliers.
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3.4.2 In Observation Space

If we want to plot in observation space, we’ll need to use only two or three observa-

tions. Let’s use two. With only two observations, we can’t have K > 1. Draw a picture

with two observations and one regressor.

• We can decompose y into two components: the orthogonal projection onto the

K− dimensional space spanned by X , X β̂, and the component that is the or-

thogonal projection onto the n−K subpace that is orthogonal to the span of X ,

ε̂.

• Since β̂ is chosen to make ε̂ as short as possible, ε̂ will be orthogonal to the space

spanned by X . Since X is in this space, X ′ε̂ = 0. Note that the f.o.c. that define

the least squares estimator imply that this is so.

3.4.3 Projection Matrices

• We have that X β̂ is the projection of y on the span of X , or

X β̂ = X
(
X ′X

)−1
X ′y

Therefore, the matrix that projects y onto the span of X is

PX = X(X ′X)−1X ′

since

X β̂ = PX y.

• ε̂ is the projection of y off the space spanned by X (that is onto the space that is

16



orthogonal to the span of X). We have that

ε̂ = y−X β̂

= y−X(X ′X)−1X ′y

=
[
In −X(X ′X)−1X ′]y.

So the matrix that projects y off the span of X is

MX = In −X(X ′X)−1X ′

= In −PX .

We have

ε̂ = MXy.

• Therefore

y = PX y+MX y

= X β̂+ ε̂.

• Note that both PX and MX are symmetric and idempotent.

– A symmetric matrix A is one such that A = A′.

– An idempotent matrix A is one such that A = AA.

– The only nonsingular idempotent matrix is the identity matrix.
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3.5 Influential observations and outliers

The OLS estimator of the ith element of the vector β0 is simply

β̂i =
[
(X ′X)−1X ′]

i· y

= c′iy

This is how we define a linear estimator - it’s a linear function of the dependent

variable. Since it’s a linear combination of the observations on the dependent vari-

able, where the weights are detemined by the observations on the regressors, some

observations may have more influence than others. Define

ht = (PX)tt

= e′tPX et

= ‖ PXet ‖2≤‖ et ‖2= 1

ht is the tth element on the main diagonal of PX ( et is a n vector of zeros with a 1 in

the tth position). So 0 ≤ ht ≤ 1, and

TrPX = K ⇒ h = K/n.

A better method is as follows. Consider estimation of β without using the t th obser-

vation (designate this estimator as β̂(t)). One can show (see Davidson and MacKinnon,

pp. 32-5 for proof) that

β̂(t) = β̂−
(

1
1−ht

)
(X ′X)−1X ′

t ε̂t
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so the change in the tth observations fitted value is

Xt β̂−Xt β̂(t) =

(
ht

1−ht

)
ε̂t

While and observation may be influential if it doesn’t affect its own fitted value, it

certainly is influential if it does. A fast means of identifying influential observations is

to plot
(

ht
1−ht

)
ε̂t as a function of t.

After influential observations are detected, one needs to determine why they are

influential. A common cause is a data entry error, which can easily be corrected. If the

data is correct then there may be some special economic factors that affect some ob-

servations. These would need to be identified and incorporated in the model. Another

possibility is that pure randomness caused us to sample a low-probability observation.

There exist robust estimation methods that downweight outliers.

3.6 Goodness of fit

The fitted model is

y = X β̂+ ε̂

Take the inner product:

y′y = β̂′X ′X β̂+2β̂′X ′ε̂+ ε̂′ε̂

But the middle term of the RHS is zero since X ′ε̂ = 0, so

y′y = β̂′X ′X β̂+ ε̂′ε̂
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The uncentered R2
u is defined as

R2
u = 1− ε̂′ε̂

y′y

=
β̂′X ′X β̂

y′y

=
‖ PX y ‖2

‖ y ‖2

= cos2(φ),

where φ is the angle between y and the span of X (show with the one regressor, two

observation example).

• The uncentered R2 changes if we add a constant to y, since this changes φ. An-

other, more common definition measures the contribution of the variables, other

than the constant term, to explaining the variation in y.

• Let ι = (1,1, ...,1)′, a n -vector. So

Mι = In − ι(ι′ι)−1ι′

= In − ιι′/n

Mιy just returns the vector of deviations from the mean.

The centered R2
c is defined as

R2
c = 1− ε̂′ε̂

y′Mιy
= 1− ESS

T SS

Supposing that X contains a column of ones (i.e., there is a constant term),

X ′ε̂ = 0 ⇒ ∑
t

ε̂t = 0
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so Mιε̂ = ε̂. In this case

y′Mιy = β̂′X ′MιX β̂+ ε̂′ε̂

So

R2
c =

RSS
T SS

• Supposing that a column of ones is in the space spanned by X (PX ι = ι), then

one can show that 0 ≤ R2
c ≤ 1.

3.7 Small sample properties of the least squares estimator

3.7.1 Unbiasedness

For β̂ we have

β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′ (Xβ+ ε)

= β0 +(X ′X)−1X ′ε

E(β̂) = β0.

For σ̂2 we have
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σ̂2
0 =

1
n−K

ε̂′ε̂

=
1

n−K
ε′Mε

E(σ̂2
0) =

1
n−K

E(Trε′Mε)

=
1

n−K
E(TrMεε′)

=
1

n−K
TrE(Mεε′)

=
1

n−K
σ2

0TrM

=
1

n−K
σ2

0

(
n−TrX(X ′X)−1X ′)

=
1

n−K
σ2

0

(
n−Tr(X ′X)−1X ′X

)

= σ2
0

3.7.2 Normality

β̂ = β0 +(X ′X)−1X ′ε

This is a linear function of ε, which is normally distributed. Therefore

β̂ ∼ N
(
β0,(X

′X)−1σ2
0

)

3.7.3 Efficiency (Gauss-Markov theorem)

The OLS estimator is a linear estimator, which means that it is a linear function of the

dependent variable, y.

β̂ =
[
(X ′X)−1X ′]y

= Cy
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It is also unbiased, as we proved above. One could consider other weights W in place

of the OLS weights. We’ll still insist upon unbiasedness. Consider β̃ = Wy. If the

estimator is unbiased

E(Wy) = E(WXβ0 +W ε)

= WXβ0

= β0

⇒

WX = IK

The variance of β̃ is

V (β̃) = WW ′σ2
0.

Define

D = W − (X ′X)−1X ′

so

W = D+(X ′X)−1X ′

Since W X = IK, DX = 0, so

V (β̃) =
(
D+(X ′X)−1X ′)(D+(X ′X)−1X ′)′σ2

0

=
(

DD′+(X ′X)−1
)

σ2
0

So

V (β̃) ≥V (β̂).

This is a proof of the Gauss-Markov Theorem.
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Theorem 1 (Gauss-Markov) Under the classical assumptions, the variance of any

linear unbiased estimator minus the variance of the OLS estimator is a positive semidef-

inite matrix.

• It is worth noting that we have not used the normality assumption in any way

to prove the Gauss-Markov theorem, so it is valid if the errors are not normally

distributed, as long as the other assumptions hold.

Before considering the asymptotic properties of the OLS estimator it is useful to review

the MLE estimator, since under the assumption of normal errors the two estimators

coincide.
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4 Maximum likelihood estimation

4.1 The likelihood function

Suppose a sample of size n of a random vector y. Suppose the joint density of Y =(
y1 . . . yn

)
is characterized by a parameter vector θ0 :

fY (Y,θ0).

This will often be referred to using the simplified notation f (θ0).

The likelihood function is just this density evaluated at other values θ

L(Y,θ) = fY (Y,θ),θ ∈ Θ,

where Θ is a parameter space.

• If the n observations are independent, the likelihood function can be written as

L(Y,θ) =
n

∏
t=1

f (yt ,θ)

where the ft are possibly of different form.

• Even if this is not possible, we can always factor the likelihood into contributions

of observations, by using the fact that a joint density can be factored into the

product of a marginal and conditional (doing this iteratively)

L(Y,θ) = f (y1,θ) f (y2|y1,θ) f (y3|y1,y2,θ) · · · f (yn|y1,y2, . . .yt−n,θ)
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To simplify notation, define

xt = {y1,y2, ...,yt−1}, t ≥ 2

= S , t = 1

where S is the sample space of Y. (With this, conditioning on x1 has no effect and gives

a marginal probability). Now the likelihood function can be written as

L(Y,θ) =
n

∏
t=1

f (yt |xt ,θ)

The criterion function can be defined as the average log-likelihood function:

sn(θ) =
1
n

lnL(Y,θ) =
1
n

n

∑
t=1

ln f (yt |xt ,θ)

The maximum likelihood estimator is defined as

θ̂ = argmaxsn(θ),

where the set maximized over is defined below. Since ln(·) is a monotonic increasing

function, lnL and L maximize at the same value of θ. Dividing by n has no effect on θ̂.

Note that one can easily modify this to include exogenous conditioning variables

in xt in addition to the yt that are already there. This changes nothing in what follows,

and therefore it is suppressed to clarify the notation.

4.2 Consistency of MLE

To show consistency of the MLE, we need to make explicit some assumptions.

Compact parameter space θ ∈ Θ, a open bounded subset of ℜK . Maximixation is
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over Θ, which is compact.

This implies that θ is an interior point of the parameter space Θ.

Uniform convergence

sn(θ)
u.a.s→ lim

n→∞
Eθ0sn(θ) ≡ s∞(θ,θ0),∀θ ∈ Θ.

We have suppressed Y here for simplicity. This requires that almost sure convergence

holds for all possible parameter values.

Continuity sn(θ) is continuous in θ,θ ∈ Θ. This implies that s∞(θ,θ0) is continuous

in θ.

Identification s∞(θ,θ0) has a unique maximum in its first argument.

We will use these assumptions to show that θ̂ a.s.→ θ0.

First, θ̂ certainly exists, since a continuous function has a maximum on a compact

set.

Second, for any θ 6= θ0

E
(

ln

(
L(θ)

L(θ0)

))
≤ ln

(
E
(

L(θ)

L(θ0)

))

by Jensen’s inequality ( ln(·) is a concave function).

Now, the expectation on the RHS is

E
(

L(θ)

L(θ0)

)
=

�
L(θ)

L(θ0)
L(θ0)dy = 1,

since L(θ0) is the density function of the observations. Therefore, since ln(1) = 0,

E
(

ln

(
L(θ)

L(θ0)

))
≤ 0,
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or

E (sn (θ))−E (sn (θ0)) ≤ 0.

Taking limits, this is

s∞(θ,θ0)− s∞(θ0,θ0) ≤ 0

except on a set of zero probability (by the uniform convergence assumption).

By the identification assumption there is a unique maximizer, so the inequality is

strict if θ 6= θ0:

s∞(θ,θ0)− s∞(θ0,θ0) < 0,∀θ 6= θ0,

However, since θ̂ is a maximizer, independent of n, we must have

s∞(θ̂,θ0)− s∞(θ0,θ0) ≥ 0.

These last two inequalities imply that

lim
n→∞

θ̂ = θ0, a.s.

This completes the proof of strong consistency of the MLE. One can use weaker as-

sumptions to prove weak consistency (convergence in probability to θ0) of the MLE.

This is omitted here. Note that almost sure convergence implies convergence in prob-

ability.

4.3 The score function

Differentiability Assume that sn(θ) is twice continuously differentiable in N(θ0), at

least when n is large enough.
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To maximize the log-likelihood function, take derivatives:

gn(Y,θ) = Dθsn(θ)

=
1
n

n

∑
t=1

Dθ ln f (yt |xx,θ)

≡ 1
n

n

∑
t=1

gt(θ).

This is the score vector (with dim K × 1). Note that the score function has Y as an

argument, which implies that it is a random function. Y will often be suppressed for

clarity, but one should not forget that it is still there.

The ML estimator θ̂ sets the derivatives to zero:

gn(θ̂) =
1
n

n

∑
t=1

gt(θ̂) ≡ 0.

We will show that Eθ [gt(θ)] = 0, ∀t. This is the expectation taken with respect to

the density f (θ), not necessarily f (θ0) .

Eθ [gt(θ)] =

�
[Dθ ln f (yt |x,θ)] f (yt|x,θ)dyt

=

�
1

f (yt |xt ,θ)
[Dθ f (yt |xt ,θ)] f (yt |xt,θ)dyt

=

�
Dθ f (yt |xt ,θ)dyt .

Given some regularity conditions on boundedness of Dθ f , we can switch the order of

integration and differentiation, by the dominated convergence theorem. This gives

Eθ [gt(θ)] = Dθ

�
f t(yt|xt ,θ)dyt

= Dθ1

= 0.
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• So Eθ(gt(θ) = 0 : the expectation of the score vector is zero.

• This hold for all t, so it implies that Eθgn(Y,θ) = 0.

4.4 Asymptotic normality of MLE

Recall that we assume that sn(θ) is twice continuously differentiable. Take a first order

Taylor’s series expansion of g(Y, θ̂) about the true value θ0 :

0 ≡ g(θ̂) = g(θ0)+(Dθ′g(θ∗))
(
θ̂−θ0

)

or with appropirate definitions

H(θ∗)
(
θ̂−θ0

)
= −g(θ0),

where θ∗ = λθ̂ +(1−λ)θ0,0 < λ < 1. Assume H(θ∗) is invertible (we’ll justify this

in a minute). So
√

n
(
θ̂−θ0

)
= −H(θ∗)−1√ng(θ0)

Now consider H(θ∗). This is

H(θ∗) = Dθ′g(θ∗)

= D2
θsn(θ∗)

=
1
n

n

∑
t=1

D2
θ ln f t(θ∗)

where the notation

D2
θsn(θ) ≡ ∂2sn(θ)

∂θ∂θ′
.

Given that this is an average of terms, it should usually be the case that this satisfies
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a strong law of large numbers (SLLN). Regularity conditions are a set of assumptions

that guarantee that this will happen. There are different sets of assumptions that can

be used to justify appeal to different SLLN’s. For example, the D2
θ ln ft(θ∗) must not

be too strongly dependent over time, and their variances must not become infinite. We

don’t assume any particular set here, since the appropriate assumptions will depend

upon the particularities of a given model. However, we assume that a SLLN applies.

Also, since we know that θ̂ is consistent, and since θ∗ = λθ̂ +(1−λ)θ0, we have

that θ∗
.

a.s.→ θ0. Given this, H(θ∗) converges to the limit of it’s expectation:

H(θ∗) a.s.→ lim
n→∞

E
(
D2

θsn(θ0)
)

= H∞(θ0) < ∞

This matrix converges to a finite limit.

Re-arranging orders of limits and differentiation, which is legitimate given regu-

larity conditions, we get

H∞(θ0) = D2
θ lim

n→∞
E (sn(θ0))

= D2
θs∞(θ0,θ0)

We’ve already seen that

s∞(θ,θ0) < s∞(θ0,θ0)

i.e., θ0 maximizes the limiting objective function. Since there is a unique maximizer,

and by the assumption that sn(θ) is twice continuously differentiable (which holds in

the limit), then H∞(θ0) must be negative definite, and therefore of full rank. Therefore
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the previous inversion is justified, asymptotically, and we have

√
n
(
θ̂−θ0

) a.s.→ −H∞(θ0)
−1√ng(θ0). (1)

Now consider
√

ng(θ0). This is

√
ngn(θ0) =

√
nDθsn(θ)

=

√
n

n

n

∑
t=1

Dθ ln ft(yt |xt ,θ0)

=
1√
n

n

∑
t=1

gt(θ0)

We’ve already seen that Eθ [gt(θ)] = 0. As such, it is reasonable to assume that a CLT

applies.

Note that gn(θ0)
a.s.→ 0, by consistency. To avoid this collapse to a degenerate r.v. (a

constant vector) we need to scale by
√

n. A generic CLT states that, for Xn a random

vector that satisfies certain conditions,

V (Xn)
−1/2 (Xn −E(Xn))

d→ N(0, I)

where V (Xn)
1/2 is any matrix such that

(
V (Xn)

1/2
)(

V (Xn)
1/2
)′

= V (Xn).

The “certain conditions” that Xn must satisfy depend on the case at hand. Usually, Xn

will be of the form of an average, scaled by
√

n:

Xn =
√

n
∑n

t=1 Xt

n

32



This is the case for
√

ng(θ0) for example. Then the properties of Xn depend on the

properties of the Xt . For example, if the Xt have finite variances and are not too strongly

dependent, then a CLT for dependent processes will apply. Supposing that a CLT

applies, and noting that E(
√

ngn(θ0) = 0, we get

I∞(θ0)
−1/2√ngn(θ0)

d→ N [0, IK]

where

I∞(θ0) = lim
n→∞

Eθ0

(
n [gn(θ0)] [gn(θ0)]

′)

= lim
n→∞

Vθ0

(√
ngn(θ0)

)

This can also be written as

√
ngn(θ0)

d→ N [0,I∞(θ0)] (2)

• I∞(θ0) is known as the information matrix.

• Combining [1] and [2], we get

√
n
(
θ̂−θ0

)
= N

[
0,H∞(θ0)

−1I∞(θ0)H∞(θ0)
−1] .

The MLE estimator is asymptotically normally distributed.

Definition 2 (CAN) An estimator θ̂ of a parameter θ0 is
√

n-consistent and asymptot-

ically normally distributed if

√
n
(
θ̂−θ0

) d→ N (0,V∞) (3)
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where V∞ is a finite positive definite matrix.

There do exist, in special cases, estimators that are consistent such that
√

n
(
θ̂−θ0

) p→

0. These are known as superconsistent estimators, since normally,
√

n is the highest

factor that we can multiply by an still get convergence to a stable limiting distribution.

Definition 3 (Asymptotic unbiasedness) An estimator θ̂ of a parameter θ0 is asymp-

totically unbiased if

lim
n→∞

Eθ(θ̂) = θ. (4)

Estimators that are CAN are asymptotically unbiased, though not all consistent

estimators are asymptotically unbiased. Such cases are unusual, though. An example

is:

Exercise 4 Consider an estimator θ̂ with distribution

θ̂ =

{
θ0 with prob. 1− 1

n
n with prob.

1
n

. (5)

Show that this estimator is consistent but asymptotically biased.

4.5 The information matrix equality

We will show that H∞(θ) = −I∞(θ). Let ft(θ) be short for f (yt |xt ,θ)

1 =

�
ft(θ)dy, so

0 =

�
Dθ ft(θ)dy

=

�
(Dθ ln ft(θ)) ft(θ)dy
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Now differentiate again:

0 =

� [
D2

θ ln ft(θ)
]

ft(θ)dy+

�
[Dθ ln ft(θ)]Dθ′ ft(θ)dy

= Eθ
[
D2

θ ln ft(θ)
]
+

�
[Dθ ln ft(θ)] [Dθ ln ft(θ)]′ ft(θ)dy

= Eθ
[
D2

θ ln ft(θ)
]
+Eθ [Dθ ln ft(θ)]

[
Dθ ln ft(θ)′

]

= Eθ [Ht(θ)]+Eθ [gt(θ)] [gt(θ)]′

Now sum over n and multiply by 1
n

Eθ
1
n

n

∑
t=1

[Ht(θ)] = −Eθ

[
1
n

n

∑
t=1

[gt(θ)] [gt(θ)]′
]

The scores gt and gs are uncorrelated for t 6= s, since for t > s, ft(yt |y1, ...,yt−1,θ) has

conditioned on prior information, so what was random in s is fixed in t. (This forms the

basis for a specification test proposed by White: if the scores appear to be correlated

one may question the specification of the model). This allows us to write

Eθ [H(θ)] = −Eθ
(
n [g(θ)][g(θ)]′

)

since all cross products between different periods expect to zero. Finally take limits,

we get

H∞(θ) = −I∞(θ).

This holds for all θ, in particular, for θ0. Using this,

√
n
(
θ̂−θ0

) a.s.→ N
[
0,H∞(θ0)

−1I∞(θ0)H∞(θ0)
−1]
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simplifies to
√

n
(
θ̂−θ0

) a.s.→ N
[
0,I∞(θ0)

−1]

To estimate the asymptotic variance, we need estimators of H∞(θ0) and I∞(θ0). We

can use

�

I∞(θ0) = n
n

∑
t=1

gt(θ̂)gt(θ̂)′

�

H∞(θ0) = H(θ̂).

Note, one can’t use
�

I∞(θ0) = n
[
gn(θ̂)

][
gn(θ̂)

]′

to estimate the information matrix. Why not?

From this we see that there are alternative ways to estimate V∞(θ0) that are all

valid. These include

�

V∞(θ0) = −
�

H∞(θ0)
−1

�

V∞(θ0) =
�

I∞(θ0)
−1

�

V∞(θ0) =
�

H∞(θ0)
−1 �

I∞(θ0)
�

H∞(θ0)
−1

These are known as the inverse Hessian, outer product of the gradient (OPG) and

sandwich estimators, respectively. The sandwich form is the most robust, since it

coincides with the covariance estimator of the quasi-ML estimator.

4.6 The Cramér-Rao lower bound

Theorem 5 (Cramer-Rao Lower Bound) The limiting variance of a CAN estimator,

θ̃, of θ0 minus the inverse of the information matrix is a positive semidefinite matrix.
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Proof: Since the estimator is CAN, it is asymptotically unbiased, so

lim
n→∞

Eθ(θ̃−θ) = 0

Differentiate wrt θ′ :

Dθ′ lim
n→∞

Eθ(θ̃−θ) = lim
n→∞

�
Dθ′
[

f (Y,θ)
(
θ̃−θ

)]
dy

= 0 (this is a K ×K matrix of zeros).

Noting that Dθ′ f (Y,θ) = f (θ)Dθ′ ln f (θ), we can write

lim
n→∞

� (
θ̃−θ

)
f (θ)Dθ′ ln f (θ)dy+ lim

n→∞

�
f (Y,θ)Dθ′

(
θ̃−θ

)
dy = 0.

Now note that Dθ′
(
θ̃−θ

)
= −IK, and

�
f (Y,θ)(−IK)dy = −IK. With this we have

lim
n→∞

� (
θ̃−θ

)
f (θ)Dθ′ ln f (θ)dy = IK.

Playing with powers of n we get

lim
n→∞

� √
n
(
θ̃−θ

)√
n

1
n

[Dθ′ ln f (θ)] f (θ)dy = IK

But 1
nDθ′ ln f (θ) is just the transpose of the score vector, g(θ), so we can write

lim
n→∞

Eθ
[√

n
(
θ̃−θ

)√
ng(θ)′

]
= IK

This means that the covariance of the score function with
√

n
(
θ̃−θ

)
, for θ̃ any CAN

estimator, is an identity matrix. Using this, suppose the variance of
√

n
(
θ̃−θ

)
tends
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to V∞(θ̃). Therefore,

V∞




√
n
(
θ̃−θ

)

√
ng(θ)


=




V∞(θ̃) IK

IK I∞(θ)


 .

Since this is a covariance matrix, it is positive semi-definite. Therefore, for any K

-vector α,

[
α′ −α′I−1

∞ (θ)

]



V∞(θ̃) IK

IK I∞(θ)







α

−I∞(θ)−1α


≥ 0.

This simplifies to

α′ (V∞(θ̃)− I−1
∞ (θ)

)
α ≥ 0.

Since α is arbitrary, V∞(θ̃)− I∞(θ) is positive semidefinite. This conludes the proof.

This means that I−1
∞ (θ) is a lower bound for the asymptotic variance of a CAN

estimator.

Definition 6 (Asymptotic Efficiency) An estimator is θ̂ of a parameter θ0 is asymp-

totically efficient if it is CAN and V∞(θ̃)−V∞(θ̂) is positive semidefinite for θ̃ any other

CAN estimator of θ0.

A direct proof of asymptotic efficiency of an estimator is infeasible, but if one can

show that the asymptotic variance is equal to the inverse of the information matrix,

then the estimator is asymptotically efficient. In particular, the MLE is asymptotically

efficient.

Summary of MLE

• Consistent

• Asymptotically normal (CAN)
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• Asymptotically efficient

• Asymptotically unbiased

• This is for general MLE: we haven’t specified the distribution or the linear-

ity/nonlinearity of the estimator
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5 Asymptotic properties of the least squares estimator

5.1 Consistency

β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′ (Xβ+ ε)

= β0 +(X ′X)−1X ′ε

= β0 +

(
X ′X

n

)−1 X ′ε
n

Consider the last two terms. By assumption limn→∞

(
X ′X

n

)
= QX ⇒ limn→∞

(
X ′X

n

)−1
=

Q−1
X , since the inverse of a nonsingular matrix is a continuous function of the elements

of the matrix. Considering X ′ε
n ,

X ′ε
n

=
1
n

n

∑
t=1

xtεt

V (xtεt) = xtx
′
tσ

2
0,

and

E(xtεtεsx
′
s) = 0, t 6= s.

So the sum is a sum of independent, nonidentically distributed random variables, each

with mean zero. Supposing that V (xtεt) < ∞,∀t, the KLLN implies

1
n

n

∑
t=1

xtεt
a.s.→ 0.

This implies that

β̂ a.s.→ β0.
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This is the property of strong consistency: the estimator converges almost surely to the

true value. If we has used a weak LLN (defined in terms of convergence in probability),

we would have (simple, weak) consistency.

• The consistency proof does not use the normality assumption.

5.2 Asymptotic normality

We’ve seen that the OLS estimator is normally distributed under the assumption of

normal errors. If the error distribution is unknown, we of course don’t know the

distribution of the estimator. However, we can get asymptotic results. Assuming the

distribution of ε is unknown, but the the other classical assumptions hold:

β̂ = β0 +(X ′X)−1X ′ε

β̂−β0 = (X ′X)−1X ′ε
√

n
(

β̂−β0

)
=

(
X ′X

n

)−1 X ′ε√
n

• Now as before,
(

X ′X
n

)−1
→ Q−1

X .

• Considering X ′ε√
n , the limit of the variance is

lim
n→∞

V

(
X ′ε√

n

)
= σ2

0 lim
n→∞

1
n

n

∑
t=1

xtx
′
t

= σ2
0QX

since cross-terms expect to zero by the assumption of uncorrelated errors.

• The mean is of course zero. This term is a sum of nonidentically, uncorrelated

but possibly dependent terms, each with mean zero, weighted by
√

n. Apply-
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ing the Lindeberg-Feller CLT for nonidentically but independently distributed

random vectors:
X ′ε√

n
d→ N

(
0,σ2

0QX
)

Therefore,
√

n
(

β̂−β0

)
d→ N

(
0,σ2

0Q−1
X

)

• In summary, the OLS estimator is normally distributed in small and large sam-

ples if ε is normally distributed. If ε is not normally distributed, β̂ is asymptoti-

cally normally distributed.

5.3 Asymptotic efficiency

The least squares objective function is

s(β) =
n

∑
t=1

(
yt − x′tβ

)2

Supposing that ε is normally distributed, the model is

y = Xβ0 + ε,

ε ∼ N(0,σ2
0In), so

f (ε) =
n

∏
t=1

1√
2πσ2

exp

(
− ε2

t

2σ2

)
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The joint density for y can be constructed using a change of variables. We have ε =

y−Xβ, so ∂ε
∂y′ = In and | ∂ε

∂y′ | = 1, so

f (y) =
n

∏
t=1

1√
2πσ2

exp

(
−(yt − x′tβ)2

2σ2

)
.

Taking logs,

lnL(β,σ) = −n ln
√

2π−n lnσ−
n

∑
t=1

(yt − x′tβ)2

2σ2 .

It’s clear that the fonc for the MLE of β0 are the same as the fonc for OLS (up to multi-

plication by a constant), so the estimators are the same, under the present assumptions.

Therefore, their properties are the same. In particular, under the classical assumptions

with normality, the OLS estimator β̂ is asymptotically efficient.

As we’ll see later, it will be possible to use linear estimation methods and still

achieve asymptotic efficiency even if the assumption that Var(ε) 6= σ2In, as long as ε

is still normally distributed. This is not the case if ε is nonnormal. In general with

nonnormal errors it will be necessary to use nonlinear estimation methods to achieve

asymptotically efficient estimation.
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6 Restrictions and hypothesis tests

6.1 Exact linear restrictions

In many cases, economic theory suggests restrictions on the parameters of a model.

For example, a demand function is supposed to be homogeneous of degree zero in

prices and income. If we have a Cobb-Douglas (log-linear) model,

lnq = β0 +β1 ln p1 +β2 ln p2 +β3 lnm+ ε,

then we need that

k0 lnq = β0 +β1 lnkp1 +β2 lnkp2 +β3 lnkm+ ε,

so

β1 ln p1 +β2 ln p2 +β3 lnm = β1 lnkp1 +β2 lnkp2 +β3 lnkm

= (lnk)(β1 +β2 +β3)+β1 ln p1 +β2 ln p2 +β3 lnm.

The only way to guarantee this for arbitrary k is to set

β1 +β2 +β3 = 0,

which is a parameter restriction. In particular, this is a linear equality restriction,

which is probably the most commonly encountered case.
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6.1.1 Imposition

The general formulation of linear equality restrictions is the model

y = Xβ+ ε

Rβ = r

where R is a Q×K matrix, Q < K and r is a Q×1 vector of constants.

• We assume R is of rank Q, so that there are no redundant restrictions.

• We also assume that ∃β that satisfies the restrictions: they aren’t infeasible.

Let’s consider how to estimate β subject to the restrictions Rβ = r. The most obvious

approach is to set up the Lagrangean

min
β

s(β) =
1
n

(y−Xβ)′ (y−Xβ)+2λ′(Rβ− r).

The Lagrange multipliers are scaled by 2, which makes thing less messy. The fonc are

Dβs(β̂, λ̂) = −2X ′y+2X ′X β̂R +2R′λ̂ ≡ 0

Dλs(β̂, λ̂) = Rβ̂R− r ≡ 0,

which can be written as




X ′X R′

R 0







β̂R

λ̂


=




X ′y

r


 .
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We get 


β̂R

λ̂


=




X ′X R′

R 0




−1


X ′y

r


 .

Aside: Stepwise Inversion

Note that




(X ′X)−1 0

−R(X ′X)−1 IQ







X ′X R′

R 0


 ≡ AB

=




IK (X ′X)−1 R′

0 −R(X ′X)−1 R′




≡




IK (X ′X)−1 R′

0 −P




≡C,

and




IK (X ′X)−1R′P−1

0 −P−1







IK (X ′X)−1 R′

0 −P


 ≡ DC

= IK+Q,
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so

DAB = IK+Q

DA = B−1

B−1 =




IK (X ′X)−1R′P−1

0 −P−1







(X ′X)−1 0

−R(X ′X)−1 IQ




=




(X ′X)−1 − (X ′X)−1R′P−1R(X ′X)−1 (X ′X)−1R′P−1

P−1R(X ′X)−1 −P−1


 ,

so




β̂R

λ̂


 =




(X ′X)−1 − (X ′X)−1R′P−1R(X ′X)−1 (X ′X)−1R′P−1

P−1R(X ′X)−1 −P−1







X ′y

r




=




β̂− (X ′X)−1R′P−1
(

Rβ̂− r
)

P−1
(

Rβ̂− r
)




=



(
IK − (X ′X)−1R′P−1R

)

P−1R


 β̂+




(X ′X)−1R′P−1r

−P−1r




The fact that β̂R and λ̂ are linear functions of β̂ makes it easy to determine their dis-

tributions, since the distribution of β̂ is already known. Recall that for x a random

vector, and for A and b a matrix and vector of constants, respectively, Var (Ax+b) =

AVar(x)A′.

Though this is the obvious way to go about finding the restricted estimator, an

easier way, if the number of restrictions is small, is to impose them by substitution.
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Write

y = X1β1 +X2β2 + ε
[

R1 R2

]



β1

β2


 = r

where R1 is Q×Q nonsingular. Supposing the Q restrictions are linearly independent,

one can always make R1 nonsingular by reorganizing the columns of X . Then

β1 = R−1
1 r−R−1

1 R2β2.

Substitute this into the model

y = X1R−1
1 r−X1R−1

1 R2β2 +X2β2 + ε

y−X1R−1
1 r =

[
X2 −X1R−1

1 R2

]
β2 + ε

or with the appropriate definitions,

yR = XRβ2 + ε.

This model satisfies the classical assumptions, supposing the restriction is true. One

can estimate by OLS. The variance of β̂2 is as before

V (β̂2) =
(
X ′

RXR
)−1 σ2

0

and the estimator is

V̂ (β̂2) =
(
X ′

RXR
)−1 σ̂2

48



where one estimates σ2
0 in the normal way, using the restricted model, i.e.,

σ̂2
0 =

(
yR −XRβ̂2

)′(
yR −XRβ̂2

)

n− (K −Q)

To recover β̂1, use the restriction. To find the variance of β̂1, use the fact that it is a

linear function of β̂2, so

V (β̂1) = R−1
1 R2V (β̂2)R

′
2

(
R−1

1

)′

= R−1
1 R2

(
X ′

2X2
)−1

R′
2

(
R−1

1

)′
σ2

0

6.1.2 Properties of the restricted estimator

We have that

β̂R = β̂− (X ′X)−1R′P−1
(

Rβ̂− r
)

= β̂+(X ′X)−1R′P−1r− (X ′X)−1R′P−1R(X ′X)−1X ′y

= β+(X ′X)−1X ′ε+(X ′X)−1R′P−1 [r−Rβ]− (X ′X)−1R′P−1R(X ′X)−1X ′ε

β̂R−β = (X ′X)−1X ′ε

+ (X ′X)−1R′P−1 [r−Rβ]

− (X ′X)−1R′P−1R(X ′X)−1X ′ε

Mean squared error is

MSE(β̂R) = E(β̂R−β)(β̂R−β)′

Noting that the crosses between the second term and the other terms expect to zero,

and that the cross of the first and third has a cancellation with the square of the third,
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we obtain

MSE(β̂R) = (X ′X)−1σ2

+ (X ′X)−1R′P−1 [r−Rβ] [r−Rβ]′P−1R(X ′X)−1

− (X ′X)−1R′P−1R(X ′X)−1σ2

So, the first term is the OLS covariance. The second term is PSD, and the third term is

NSD.

• If the restriction is true, the second term is 0, so we are better off. True restric-

tions improve efficiency of estimation.

• If the restriction is false, we may be better or worse off, in terms of MSE, de-

pending on the magnitudes of r−Rβ and σ2.

6.2 Testing

In many cases, one wishes to test economic theories. If theory suggests parameter

restrictions, as in the above homogeneity example, one can test theory by testing pa-

rameter restrictions. A number of tests are available.

6.2.1 t-test

Suppose one has the model

y = Xβ+ ε
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and one wishes to test the single restriction H0 :Rβ = r vs. HA :Rβ 6= r . Under H0,

with normality of the errors,

Rβ̂− r ∼ N
(
0,R(X ′X)−1R′σ2

0

)

so
Rβ̂− r√

R(X ′X)−1R′σ2
0

=
Rβ̂− r

σ0
√

R(X ′X)−1R′ ∼ N (0,1) .

The problem is that σ2
0 is unknown. One could use the consistent estimator σ̂2

0 in place

of σ2
0, but the test would only be valid asymptotically in this case.

Proposition 7
N(0,1)√

χ2(q)
q

∼ t(q) (6)

as long as the N(0,1) and the χ2(q) are independent.

We need a few results on the 2 distribution.

Proposition 8 If x ∼ N(µ, In) is a vector of n independent r.v.’s., then

x′x ∼ χ2(n,λ) (7)

where λ = ∑i µ2
i = µ′µ is the noncentrality parameter.

When a χ2 r.v. has the noncentrality parameter equal to zero, it is referred to as a

central χ2 r.v., and it’s distribution is written as χ2(n), suppressing the noncentrality

parameter.

Proposition 9 If the n dimensional random vector x ∼ N(0,V ), then x′V−1x ∼ χ2(n).
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We’ll prove this one as an indication of how the following unproven propositions

could be proved.

Proof. Factor V−1 as PP′ (this is the Cholesky factorization). Then consider y =

P′x. We have

y ∼ N(0,P′V P)

but

VPP′ = In

P′VPP′ = P′

so PV P′ = In.

y ∼ N(0, In)

y′y = x′PP′x

= xV−1x

∼ χ2(n)

A more general proposition which implies this result is

Proposition 10 If the n dimensional random vector x ∼ N(0,V ), then

x′Bx ∼ χ2(ρ(B)) (8)

if and only if BV is idempotent.

An immediate consequence is
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Proposition 11 If the random vector (of dimension n) x ∼ N(0, I), and B is idempotent

with rank r, then

x′Bx ∼ χ2(r). (9)

Consider the random variable

ε̂′ε̂
σ2

0

=
ε′MX ε

σ2
0

=

(
ε

σ0

)′
MX

(
ε

σ0

)

∼ χ2(n−K)

Proposition 12 If the random vector (of dimension n) x ∼ N(0, I), then Ax and x′Bx

are independent if AB = 0.

Now consider (remember that we have only one restriction in this case)

Rβ̂−r

σ0

√
R(X ′X)−1R′

√
ε̂′ε̂

(n−K)σ2
0

=
Rβ̂− r

σ̂0
√

R(X ′X)−1R′

This will have the t(n−K) distribution if β̂ and ε̂′ε̂ are independent. But β̂ = β +

(X ′X)−1X ′ε and

(X ′X)−1X ′MX = 0,

so
Rβ̂− r

σ̂0
√

R(X ′X)−1R′ =
Rβ̂− r

σ̂Rβ̂
∼ t(n−K)

In particular, for the commonly encountered test of significance of an individual coef-

ficient, for which H0 : βi = 0 vs. H0 : βi 6= 0 , the test statistic is

β̂i

σ̂β̂i

∼ t(n−K)
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• Note: the t− test is strictly valid only if the errors are actually normally dis-

tributed. If one has nonnormal errors, one could use the above asymptotic result

to justify taking critical values from the N(0,1) distribution, since t(n−K)
d→

N(0,1) as n → ∞. In practice, a conservative procedure is to take critical values

from the t distribution if nonnormality is suspected. This will reject H0 less often

since the t distribution is fatter-tailed than is the normal.

6.2.2 F test

The F test allows testing multiple restrictions jointly.

Proposition 13 If x ∼ χ2(r) and y ∼ χ2(s), then

x/r
y/s

∼ F(r,s) (10)

provided that x and y are independent.

Proposition 14 If the random vector (of dimension n) x ∼ N(0, I), then x′Ax and x′Bx

are independent if AB = 0.

Using these results, and previous results on the 2 distribution, it is simple to show

that the following statistic has the F distribution:

F =

(
Rβ̂− r

)′(
R(X ′X)−1 R′

)−1(
Rβ̂− r

)

qσ̂2 ∼ F(q,n−K).

A numerically equivalent expression is

(ESSR −ESSU)/q
ESSU/(n−K)

∼ F(q,n−K).
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• Note: The F test is strictly valid only if the errors are truly normally distributed.

The following tests will be appropriate when one cannot assume normally dis-

tributed errors.

6.2.3 Wald-type tests

The Wald principle is based on the idea that if a restriction is true, the unrestricted

model should “approximately” satisfy the restriction. Given that the least squares esti-

mator is asymptotically normally distributed:

√
n
(

β̂−β0

)
d→ N

(
0,σ2

0Q−1
X

)

then under H0 : Rβ0 = r, we have

√
n
(

Rβ̂− r
)

d→ N
(

0,σ2
0RQ−1

X R′
)

so by Proposition [9]

n
(

Rβ̂− r
)′(

σ2
0RQ−1

X R′
)−1(

Rβ̂− r
)

d→ χ2(q)

Note that Q−1
X or σ2

0 are not observable. The test statistic we use substitutes the con-

sistent estimators. Use (X ′X/n)−1 as the consistent estimator of Q−1
X . With this, there

is a cancellation of n′s, and the statistic to use is

(
Rβ̂− r

)′(
σ̂2

0R(X ′X)−1R′
)−1(

Rβ̂− r
)

d→ χ2(q)

• The Wald test is a simple way to test restrictions without having to estimate the

restricted model.
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• Note that this formula is similar to one of the formulae provided for the F test.

6.2.4 Score-type tests (Rao tests, Lagrange multiplier tests)

In some cases, an unrestricted model may be nonlinear in the parameters, but the model

is linear in the parameters under the null hypothesis. For example, the model

y = (Xβ)γ + ε

is nonlinear in β and γ, but is linear in β under H0 : γ = 1. Estimation of nonlinear

models is a bit more complicated, so one might prefer to have a test based upon the

restricted, linear model. The score test is useful in this situation.

• Score-type tests are based upon the general principle that the gradient vector of

the unrestricted model, evaluated at the restricted estimate, should be asymp-

totically normally distributed with mean zero, if the restrictions are true. The

original development was for ML estimation, but the principle is valid for a

wide variety of estimation methods.

We have seen that

λ̂ =
(
R(X ′X)−1R′)−1

(
Rβ̂− r

)

= P−1
(

Rβ̂− r
)

Given that
√

n
(

Rβ̂− r
)

d→ N
(

0,σ2
0RQ−1

X R′
)

under the null hypothesis,

√
nλ̂ d→ N

(
0,σ2

0P−1RQ−1
X R′P−1

)
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or
√

nλ̂ d→ N
(

0,σ2
0 limn(nP)−1 RQ−1

X R′P−1
)

since the n’s cancel and inserting the limit of a matrix of constants changes nothing.

However,

limnP = limnR(X ′X)−1R′

= limR

(
X ′X

n

)−1

R′

= RQ−1
X R′

So there is a cancellation and we get

√
nλ̂ d→ N

(
0,σ2

0 limnP−1)

In this case,

λ̂′
(

R(X ′X)−1R′

σ2
0

)
λ̂ d→ χ2(q)

since the powers of n cancel. To get a usable test statistic substitute a consistent esti-

mator of σ2
0.

• This makes it clear why the test is sometimes referred to as a Lagrange multiplier

test. It may seem that one needs the actual Lagrange multipliers to calculate this.

If we impose the restrictions by substitution, these are not available. Note that

the test can be written as

(
R′λ̂
)′

(X ′X)−1R′λ̂

σ2
0

d→ χ2(q)
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However, we can use the fonc for the restricted estimator:

−X ′y+X ′X β̂R +R′λ̂

to get that

R′λ̂ = X ′(y−X β̂R)

= X ′ε̂R

Substituting this into the above, we get

ε̂′RX(X ′X)−1X ′ε̂R

σ2
0

d→ χ2(q)

but this is simply

ε̂′R
PX

σ2
0

ε̂R
d→ χ2(q).

To see why the test is also known as a score test, note that the fonc for restricted least

squares

−X ′y+X ′X β̂R +R′λ̂

give us

R′λ̂ = X ′y−X ′X β̂R

and the rhs is simply the gradient (score) of the unrestricted model, evaluated at the

restricted estimator. The scores evaluated at the unrestricted estimate are identically

zero. The logic behind the score test is that the scores evaluated at the restricted esti-

mate should be approximately zero, if the restriction is true. The test is also known as

a Rao test, since P. Rao first proposed it in 1948.
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6.2.5 Likelihood ratio-type tests

The Wald test can be calculated using the unrestricted model. The score test can be

calculated using only the restricted model. The likelihood ratio test, on the other hand,

uses both the restricted and the unrestricted estimators. The test statistic is

LR = 2
(
lnL(θ̂)− lnL(θ̃)

)

where θ̂ is the unrestricted estimate and θ̃ is the restricted estimate. To show that it is

asymptotically χ2, take a second order Taylor’s series expansion of lnL(θ̃) about θ̂ :

lnL(θ̃) ' lnL(θ̂)+
n
2

(
θ̃− θ̂

)′
H(θ̂)

(
θ̃− θ̂

)

(note, the first order term drops out since Dθ lnL(θ̂) ≡ 0 by the fonc and we need to

multiply the second-order term by n since H(θ) is defined in terms of 1
n lnL(θ)) so

LR '−n
(
θ̃− θ̂

)′
H(θ̂)

(
θ̃− θ̂

)

As n → ∞,H(θ̂) → H∞(θ0) = −I (θ0), by the information matrix equality. So

LR
a
= n

(
θ̃− θ̂

)′ I∞(θ0)
(
θ̃− θ̂

)

We also have that, from [??] that

√
n
(
θ̂−θ0

) a
= I∞(θ0)

−1n1/2g(θ0).

An analogous result for the restricted estimator is (this is unproven here, to prove

this set up the Lagrangean for MLE subject to Rβ = r, and manipulate the first order
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conditions) :

√
n
(
θ̃−θ0

) a
= I∞(θ0)

−1
(

In −R′ (RI∞(θ0)
−1R′)−1

RI∞(θ0)
−1
)

n1/2g(θ0).

Combining the last two equations

√
n
(
θ̃− θ̂

) a
= −n1/2I∞(θ0)

−1R′ (RI∞(θ0)
−1R′)−1

RI∞(θ0)
−1g(θ0)

so, substituting into [??]

LR
a
=
[
n1/2g(θ0)

′I∞(θ0)
−1R′

][
RI∞(θ0)

−1R′]−1
[
RI∞(θ0)

−1n1/2g(θ0)
]

But since

n1/2g(θ0)
d→ N (0,I∞(θ0))

the linear function

RI∞(θ0)
−1n1/2g(θ0)

d→ N(0,RI∞(θ0)
−1R′).

We can see that LR is a quadratic form of this rv, with the inverse of its variance in the

middle, so

LR
d→ χ2(q).

6.3 The asymptotic equivalence of the LR, Wald and score tests

We have seen that the three tests all converge to χ2 random variables. In fact, they all

converge to the same χ2 rv, under the null hypothesis. We’ll show that the Wald and LR

tests are asymptotically equivalent. We have seen that the Wald test is asymptotically
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equivalent to

W
a
= n

(
Rβ̂− r

)′(
σ2

0RQ−1
X R′

)−1(
Rβ̂− r

)
d→ χ2(q)

Using

β̂−β0 = (X ′X)−1X ′ε

and

Rβ̂− r = R(β̂−β0)

we get

√
nR(β̂−β0) =

√
nR(X ′X)−1X ′ε

= R

(
X ′X

n

)−1

n−1/2X ′ε

Substitute this into [??] to get

W
a
= n−1ε′XQ−1

X R′
(

σ2
0RQ−1

X R′
)−1

RQ−1
X X ′ε

a
= ε′X(X ′X)−1R′ (σ2

0R(X ′X)−1R′)−1
R(X ′X)−1X ′ε

a
=

ε′A(A′A)−1A′ε
σ2

0

a
=

ε′PRε
σ2

0

where PR is the projection matrix formed by the matrix X(X ′X)−1R′.

• Note that this matrix is idempotent and has q columns, so the projection matrix

has rank q.
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Now consider the likelihood ratio statistic

LR
a
= n1/2g(θ0)

′I (θ0)
−1R′ (RI (θ0)

−1R′)−1
RI (θ0)

−1n1/2g(θ0)

Under normality, we have seen that the likelihood function is

lnL(β,σ) = −n ln
√

2π−n lnσ− 1
2

(y−Xβ)′ (y−Xβ)

σ2 .

Using this,

g(β0) ≡ Dβ
1
n

lnL(β,σ)

=
X ′(y−Xβ0)

nσ2

=
X ′ε
nσ2

Also, by the information matrix equality:

I (θ0) = −H∞(θ0)

= lim−Dβ′g(β0)

= lim−Dβ′
X ′(y−Xβ0)

nσ2

= lim
X ′X
nσ2

=
QX

σ2

so

I (θ0)
−1 = σ2Q−1

X
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Substituting these last expressions into [??], we get

LR
a
= ε′X ′(X ′X)−1R′ (σ2

0R(X ′X)−1R′)−1
R(X ′X)−1X ′ε

a
=

ε′PRε
σ2

0
a
= W

This completes the proof that the Wald and LR tests are asymptotically equivalent.

Similarly, one can show that, under the null hypothesis,

qF
a
= W

a
= LM

a
= LR

• The proof for the statistics except for LR does not depend upon normality of the

errors, as can be verified by examining the expressions for the statistics.

• The LR statistic is based upon distributional assumptions, since one can’t write

the likelihood function without them.

• However, due to the close relationship between the statistics qF and LR, suppos-

ing normality, the qF statistic can be thought of as a pseudo-LR statistic, in that

it’s like a LR statistic in that it uses the value of the objective functions of the

restricted and unrestricted models, but it doesn’t require distributional assump-

tions.

• The presentation of the score and Wald tests has been done in the context of

the linear model. This is readily generalizable to nonlinear models and/or other

estimation methods.

Though the four statistics are asymptotically equivalent, they are numerically different

in small samples. The numeric values of the tests also depend upon how σ2 is esti-
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mated, and we’ve already seen than there are several ways to do this. For example all

of the following are consistent for σ2 under H0

ε̂′ε̂
n−k

ε̂′ε̂
n

ε̂′Rε̂R
n−k+q

ε̂′Rε̂R
n

and in general the denominator call be replaced with any quantity a such that lima/n =

1.

It can be shown, for linear regression models subject to linear restrictions, and if

ε̂′ε̂
n is used to calculate the Wald test and ε̂′Rε̂R

n is used for the score test, that

W > LR > LM.

For this reason, the Wald test will always reject if the LR test rejects, and in turn the

LR test rejects if the LM test rejects. This is a bit problematic: there is the possibility

that by careful choice of the statistic used, one can manipulate reported results to favor

or disfavor a hypothesis. A conservative/honest approach would be to report all three

test statistics when they are available. In the case of linear models with normal errors

the F test is to be preferred, since asymptotic approximations are not an issue.

The small sample behavior of the tests can be quite different. The true size (proba-

bility of rejection of the null when the null is true) of the Wald test is often dramatically

higher than the nominal size associated with the asymptotic distribution. Likewise, the

true size of the score test is often smaller than the nominal size.
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6.4 Interpretation of test statistics

Now that we have a menu of test statistics, we need to know how to use them.

6.5 Confidence intervals

Confidence intervals for single coefficients are generated in the normal manner. Given

the t statistic

t(β) =
β̂−β

σ̂β̂

a 100(1−α)% confidence interval for β0 is defined by the bounds of the set of β such

that t(β) does not reject H0 : β0 = β, using a α significance level:

C(α) = {β : −cα/2 <
β̂−β

σ̂β̂
< cα/2}

The set of such β is the interval

β̂± σ̂β̂cα/2

A confidence ellipse for two coefficients jointly would be, analogously, the set

of {β1,β2} such that the F (or some other test statistic) doesn’t reject at the specified

critical value. This generates an ellipse, if the estimators are correlated. Draw a picture

here.

• The region is an ellipse, since the CI for an individual coefficient defines a (in-

finitely long) rectangle with total prob. mass 1−α, since the other coefficient is

marginalized (e.g., can take on any value). Since the ellipse is bounded in both

dimensions but also contains mass 1−α, it must extend beyond the bounds of

the individual CI.

• From the pictue we can see that:
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– Rejection of hypotheses individually does not imply that the joint test will

reject.

– Joint rejection does not imply individal tests will reject.

6.6 Bootstrapping

When we rely on asymptotic theory to use the normal distribution-based tests and

confidence intervals, we’re often at serious risk of making important errors. If the

sample size is small and errors are highly nonnormal, the small sample distribution

of
√

n
(

β̂−β0

)
may be very different than its large sample distribution. Also, the

distributions of test statistics may not resemble their limiting distributions at all. A

means of trying to gain information on the small sample distribution of test statistics

and estimators is the bootstrap. We’ll consider a simple example, just to get the main

idea.

Suppose that

y = Xβ0 + ε

ε ∼ IID(0,σ2
0)

X is nonstochastic

Given that the distribution of ε is unknown, the distribution of β̂ will be unknown in

small samples. However, since we have random sampling, we could generate artificial

data. The steps are:

1. Draw n observations from ε̂ with replacement. Call this vector ε̃ j (it’s a n×1).

2. Then generate the data by ỹ j = X β̂+ ε̃ j
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3. Now take this and estimate

β̃ j = (X ′X)−1X ′ỹ j.

4. Save β̃ j

5. Repeat steps 1-4, until we have a large number, J, of β̃ j.

With this, we can use the replications to calculate the empirical distribution of β̃ j.

One way to form a 100(1-α)% confidence interval for β0 would be to order the β̃ j

from smallest to largest, and drop the first and last Jα/2 of the replications, and use

the remaining endpoints as the limits of the CI. Note that this will not give the shortest

CI if the empirical distribution is skewed.

• Suppose one was interested in the distribution of some function of β̂, for example

a test statistic. Simple: just calculate the transformation for each j, and work

with the empirical distribution of the transformation.

• If the assumption of iid errors is too strong (for example if there is heteroscedas-

ticity or autocorrelation, see below) one can work with a bootstrap defined by

sampling from (y,x) with replacement.

• How to choose J: J should be large enough that the results don’t change with

repetition of the entire bootstrap. This is easy to check. If you find the results

change a lot, increase J and try again.

• The bootstrap is based fundamentally on the idea that the empirical distribution

of (y,x) converges to the actual sampling distribution as n becomes large, so

statistics based on sampling from the empirical distribution should converge in

distribution to statistics based on sampling from the actual sampling distribution.
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• In finite samples, this doesn’t hold. At a minimum, the bootstrap is a good way

to check if asymptotic theory results offer a decent approximation to the small

sample distribution.

6.7 Testing nonlinear restrictions

Testing nonlinear restrictions of a linear model is not much more difficult, at least

when the model is linear. Since estimation subject to nonlinear restrictions requires

nonlinear estimation methods, which are beyond the score of this course, we’ll just

consider the Wald test for nonlinear restrictions on a linear model.

Consider the q nonlinear restrictions

r(β0) = 0.

where r(·) is a q-vector valued function. Write the derivative of the restriction evalu-

ated at β as

Dβ′r(β)
∣∣
β = R(β)

We suppose that the restrictions are not redundant in a neighborhood of β0, so that

ρ(R(β)) = q

in a neighborhood of β0. Take a first order Taylor’s series expansion of r(β̂) about β0:

r(β̂) = r(β0)+R(β∗)(β̂−β0)
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where β∗ is a convex combination of β̂ and β0. Under the null hypothesis we have

r(β̂) = R(β∗)(β̂−β0)

Due to consistency of β̂ we can replace β∗ by β0, asymptotically, so

√
nr(β̂)

a
=

√
nR(β0)(β̂−β0)

We’ve already seen the distribution of
√

n(β̂−β0). Using this we get

√
nr(β̂)

d→ N
(

0,R(β0)Q
−1
X R(β0)

′σ2
0

)
.

Considering the quadratic form

nr(β̂)′
(

R(β0)Q
−1
X R(β0)

′
)−1

r(β̂)

σ2
0

d→ χ2(q)

under the null hypothesis. Substituting consistent estimators for β0,QX and σ2
0, the

resulting statistic is

r(β̂)′
(

R(β̂)(X ′X)−1R(β̂)′
)−1

r(β̂)

σ̂2

d→ χ2(q)

under the null hypothesis.

• This is known in the literature as the Delta method, or as Klein’s approximation.

• Since this is a Wald test, it will tend to over-reject in finite samples. The score

and LR tests are also possibilities, but they require estimation methods for non-

linear models, which aren’t in the scope of this course.
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Note that this also gives a convenient way to estimate nonlinear functions and associ-

ated asymptotic confidence intervals. If the nonlinear function r(β0) is not hypothe-

sized to be zero, we just have

√
n
(

r(β̂)− r(β0)
)

d→ N
(

0,R(β0)Q
−1
X R(β0)

′σ2
0

)

so an approximation to the distribution of the function of the estimator is

r(β̂) ≈ N(r(β0),R(β0)(X
′X)−1R(β0)

′σ2
0)

For example, the vector of elasticities of a function f (x) is

E(x) =
∂ f (x)

∂x
x

f (x)

where I’m using element-by-element multiplication and division. Suppose we estimate

a linear function

y = x′β+ ε.

The elasticities of y w.r.t. x are

ηi(x) =
βi

x′β
xi

The estimator of the ith elasticity is

η̂i(x) =
β̂i

x′β̂
xi
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To calculate the estimated standard errors of all five elasticites, use

Ri(β) =
∂ηi(x)

∂β′

=
[ 0 0 0 xi 0 ]x′β− x(xiβi)

(x′β)2

to obtain the i th row of R(β), and apply the above formula. Note that the elasticity

and the standard error are functions of x.

In many cases, nonlinear restrictions can also involve the data, not just the param-

eters. For example, consider a model of expenditure shares. Let x(p,m) be a demand

funcion, where p is prices and m is income. An expenditure share system for G goods

is

si(p,m) =
pixi(p,m)

m
, i = 1,2, ...,G.

Now demand must be positive, and we assume that expenditures sum to income, so we

have the restrictions

0 ≤ si(p,m) ≤ 1,∀i
G

∑
i=1

si(p,m) = 1

Suppose we postulate a linear model for the expenditure shares:

si(p,m) = βi
1 + p′βi

p +mβi
m + εi

It is fairly easy to write restrictions such that the shares sum to one, but the restriction

that the shares lie in the [0,1] interval depends on both parameters and the values of p

and m. It is impossible to impose the restriction that 0 ≤ si(p,m)≤ 1 for all possible p

and m. In such cases, one might consider whether or not a linear model is a reasonable
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specification.
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7 Generalized least squares

One of the assumptions we’ve made up to now is that

εt ∼ IID(0,σ2),

or occasionally

εt ∼ IIN(0,σ2).

Now we’ll investigate the consequences of nonidentically and/or dependently dis-

tributed errors. The model is

y = Xβ+ ε

E(ε) = 0

V (ε) = Σ

E(X ′ε) = 0

where Σ is a general symmetric positive definite matrix (we’ll write β in place of β0 to

simplify the typing of these notes).

• The case where Σ is a diagonal matrix gives uncorrelated, nonidentically dis-

tributed errors. This is known as heteroscedasticity.

• The case where Σ has the same number on the main diagonal but nonzero el-

ements off the main diagonal gives identically (assuming higher moments are

also the same) dependently distributed errors. This is known as autocorrelation.

• The general case combines heteroscedasticity and autocorrelation. This is known

as “nonspherical” disturbances, though why this term is used, I have no idea.
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Perhaps it’s because under the classical assumptions, a joint confidence region

for ε would be an n− dimensional hypersphere.

7.1 Effects of nonspherical disturbances on the OLS estimator

The least square estimator is

β̂ = (X ′X)−1X ′y

= β+(X ′X)−1X ′ε

• Conditional on X , or supposing that X is independent of ε, we have unbiased-

ness, as before.

• The variance of β̂, supposing X is nonstochastic, is

E
[
(β̂−β)(β̂−β)′

]
= E

[
(X ′X)−1X ′εε′X(X ′X)−1]

= (X ′X)−1X ′ΣX(X ′X)−1

Due to this, any test statistic that is based upon σ̂2 or the probability limit σ̂2 of

is invalid. In particular, the formulas for the t, F,χ2 based tests given above do

not lead to statistics with these distributions.

• β̂ is still consistent, following exactly the same argument given before.

• If ε is normally distributed, then, conditional on X

β̂ ∼ N
(
β,(X ′X)−1X ′ΣX(X ′X)−1)

The problem is that Σ is unknown in general, so this distribution won’t be useful
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for testing hypotheses.

• Without normality, and unconditional on X we still have

√
n
(

β̂−β
)

=
√

n(X ′X)−1X ′ε

=

(
X ′X

n

)−1

n−1/2X ′ε

Define the limiting variance of n−1/2X ′ε (supposing a CLT applies) as

lim
n→∞

E
(

X ′εε′X
n

)
= Ω

so we obtain
√

n
(

β̂−β
)

d→ N
(

0,Q−1
X ΩQ−1

X

)

Summary: OLS with heteroscedasticity and/or autocorrelation is:

• unbiased in the same circumstances in which the estimator is unbiased with iid

errors

• has a different variance than before, so the previous test statistics aren’t valid

• is consistent

• is asymptotically normally distributed, but with a different limiting covariance

matrix. Previous test statistics aren’t valid in this case for this reason.

• is inefficient, as is shown below.

7.2 The GLS estimator

Suppose Σ were known. Then one could form the Cholesky decomposition

PP′ = Σ−1
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We have

PP′Σ = In

so

P′ (PΣP′)= P′,

which implies that

P′ΣP = In

Consider the model

P′y = P′Xβ+P′ε,

or, making the obvious definitions,

y∗ = X∗β+ ε∗.

This variance of ε∗ = P′ε is

E(P′εε′P) = P′ΣP

= In

Therefore, the model

y∗ = X∗β+ ε∗

E(ε∗) = 0

V (ε∗) = In

E(X∗′ε∗) = 0

satisfies the classical assumptions (with modifications to allow stochastic regressors
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and nonnormality of ε). The GLS estimator is simply OLS applied to the transformed

model:

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X ′PP′X)−1X ′PP′y

= (X ′Σ−1X)−1X ′Σ−1y

The GLS estimator is unbiased in the same circumstances under which the OLS

estimator is unbiased. For example, assuming X is nonstochastic

E(β̂GLS) = E
{
(X ′Σ−1X)−1X ′Σ−1y

}

= E
{
(X ′Σ−1X)−1X ′Σ−1(Xβ+ ε

}

= β.

The variance of the estimator, conditional on X can be calculated using

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X∗′X∗)−1X∗′ (X∗β+ ε∗)

= β+(X∗′X∗)−1X∗′ε∗

so

E
{(

β̂GLS −β
)(

β̂GLS −β
)′}

= E
{
(X∗′X∗)−1X∗′ε∗ε∗′X∗(X∗′X∗)−1

}

= (X∗′X∗)−1X∗′X∗(X∗′X∗)−1

= (X∗′X∗)−1

= (X ′Σ−1X)−1
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Either of these last formulas can be used.

• All the previous results regarding the desirable properties of the least squares

estimator hold, when dealing with the transformed model.

• Tests are valid, using the previous formulas, as long as we substitute X ∗ in place

of X . Furthermore, any test that involves σ2 can set it to 1. This is preferable to

re-deriving the appropriate formulas.

• The GLS estimator is more efficient than the OLS estimator. This is a conse-

quence of the Gauss-Markov theorem, since the GLS estimator is based on a

model that satisfies the classical assumptions but the OLS estimator is not. To

see this directly, not that

Var(β̂)−Var(β̂GLS) = (X ′X)−1X ′ΣX(X ′X)−1 − (X ′Σ−1X)−1

=

• As one can verify by calculating fonc, the GLS estimator is the solution to the

minimization problem

β̂GLS = argmin(y−Xβ)′Σ−1(y−Xβ)

so the metric Σ−1 is used to weight the residuals.

7.3 Feasible GLS

The problem is that Σ isn’t known usually, so this estimator isn’t available.

• Consider the dimension of Σ : it’s an n×n matrix with
(
n2 −n

)
/2+n =

(
n2 +n

)
/2

unique elements.
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• The number of parameters to estimate is larger than n and increases faster than

n. There’s no way to devise an estimator that satisfies a LLN without adding

restrictions.

• The feasible GLS estimator is based upon making sufficient assumptions regard-

ing the form of Σ so that a consistent estimator can be devised.

Suppose that we parameterize Σ as a function of X and θ, where θ may include β as

well as other parameters, so that

Σ = Σ(X ,θ)

where θ is of fixed dimension. If we can consistently estimate θ, we can consistently

estimate Σ, as long as Σ(X ,θ) is a continuous function of θ (by the Slutsky theorem).

In this case,

Σ̂ = Σ(X , θ̂)
p→ Σ(X ,θ)

If we replace Σ in the formulas for the GLS estimator with Σ̂, we obtain the FGLS

estimator. The FGLS estimator shares the same asymptotic properties as GLS.

These are

1. Consistency

2. Asymptotic normality

3. Asymptotic efficiency if the errors are normally distributed. (Cramer-Rao).

4. Test procedures are asymptotically valid.

In practice, the usual way to proceed is
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1. Define a consistent estimator of θ. This is a case-by-case proposition, depending

on the parameterization Σ(θ). We’ll see examples below.

2. Form Σ̂ = Σ(X , θ̂)

3. Calculate the Cholesky factorization P̂ = Chol(Σ̂−1).

4. Transform the model using

P̂′y = P̂′Xβ+ P̂′ε

5. Estimate using OLS on the transformed model.

7.4 Heteroscedasticity

Heteroscedasticity is the case where

E(εε′) = Σ

is a diagonal matrix, so that the errors are uncorrelated, but have different variances.

Heteroscedasticity is usually thought of as associated with cross sectional data, though

there is absolutely no reason why time series data cannot also be heteroscedastic. Ac-

tually, the popular ARCH (autoregressive conditionally heteroscedastic) models ex-

plicitly assume that a time series is heteroscedastic.

Consider a supply function

qi = β1 +βpPi +βsSi + εi

where Pi is price and Si is some measure of size of the ith firm. One might suppose
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that unobservable factors (e.g., talent of managers, degree of coordination between

production units, etc.) account for the error term εi. If there is more variability in these

factors for large firms than for small firms, then εi may have a higher variance when Si

is high than when it is low.

Another example, individual demand.

qi = β1 +βpPi +βmMi + εi

where P is price and M is income. In this case, εi can reflect variations in preferences.

There are more possibilities for expression of preferences when one is rich, so it is

possible that the variance of εi could be higher when M is high.

Add example of group means.

7.4.1 OLS with heteroscedastic consistent varcov estimation

Eicker (1967) and White (1980) showed how to modify test statistics to account for

heteroscedasticity of unknown form. The OLS estimator has asymptotic distribution

√
n
(

β̂−β
)

d→ N
(

0,Q−1
X ΩQ−1

X

)

as we’ve already seen. Recall that we defined

lim
n→∞

E
(

X ′εε′X
n

)
= Ω

This matrix has dimension K ×K and can be consistently estimated, even if we can’t

estimate Σ consistently. The consistent estimator, under heteroscedasticity but no au-

tocorrelation is

Ω̂ =
1
n

n

∑
t=1

x′txt ε̂2
t
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One can then modify the previous test statistics to obtain tests that are valid when there

is heteroscedasticity of unknown form. For example, the Wald test for H0 : Rβ− r = 0

would be

n
(

Rβ̂− r
)′
(

R

(
X ′X

n

)−1

Ω̂
(

X ′X
n

)−1

R′
)−1(

Rβ̂− r
)

a∼ χ2(q)

7.4.2 Detection

There exist many tests for the presence of heteroscedasticity. We’ll discuss three meth-

ods.

Goldfeld-Quandt The sample is divided in to three parts, with n1,n2 and n3 obser-

vations, where n1 +n2 +n3 = n. The model is estimated using the first and third parts

of the sample, separately, so that β̂1 and β̂3 will be independent. Then we have

ε̂1′ε̂1

σ2 =
ε1′M1ε1

σ2
d→ χ2(n1 −K)

and

ε̂3′ε̂3

σ2 =
ε3′M3ε3

σ2
d→ χ2(n3 −K)

so
ε̂1′ε̂1/(n1 −K)

ε̂3′ε̂3/(n3 −K)
d→ F(n1−K,n3 −K).

The distributional result is exact if the errors are normally distributed. This test is a

two-tailed test. Alternatively, and probably more conventionally, if one has prior ideas

about the possible magnitudes of the variances of the observations, one could order

the observations accordingly, from largest to smallest. In this case, one would use a

conventional one-tailed F-test. Draw picture.
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• Ordering the observations is an important step if the test is to have any power.

• The motive for dropping the middle observations is to increase the difference

between the average variance in the subsamples, supposing that there exists het-

eroscedasticity. This can increase the power of the test. On the other hand,

dropping too many observations will substantially increase the variance of the

statistics ε̂1′ε̂1 and ε̂3′ε̂3. A rule of thumb, based on Monte Carlo experiments is

to drop around 25% of the observations.

• If one doesn’t have any ideas about the form of the het. the test will probably

have low power since a sensible data ordering isn’t available.

White’s test When one has little idea if there exists heteroscedasticity, and no idea

of its potential form, the White test is a possibility. The idea is that if there is ho-

moscedasticity, then

E(ε2
t |xt) = σ2,∀t

so that xt or functions of xt shouldn’t help to explain E(ε2
t ). The test works as follows:

1. Since εt isn’t available, use the consistent estimator ε̂t instead.

2. Regress

ε̂2
t = σ2 + zt

′γ+ vt

where zt is a P -vector. zt may include some or all of the variables in xt , as well

as other variables. White’s original suggestion was the set of all unique squares

and cross products of variables in xt .

3. Test the hypothesis that γ = 0. The qF statistic in this case is

qF =
P(ESSR−ESSU)/P
ESSU/(n−P−1)
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Note that ESSR = T SSU , so dividing both numerator and denominator by this

we get

qF = (n−P−1)
R2

1−R2

Note that this is the R2 or the artificial regression used to test for heteroscedas-

ticity, not the R2 of the original model.

An asymptotically equivalent statistic, under the null of no heteroscedasticity (so that

R2 should tend to zero), is

nR2 a∼ χ2(P).

This doesn’t require normality of the errors, though it does assume that the fourth

moment of εt is constant, under the null. Question: why is this necessary?

• The White test has the disadvantage that it may not be very powerful unless the

zt vector is chosen well, and this is hard to do without knowledge of the form of

heteroscedasticity.

• It also has the problem that specification errors other than heteroscedasticity may

lead to rejection.

• Note: the null hypothesis of this test may be interpreted as θ = 0 for the variance

model V (ε2
t ) = h(α+ z′tθ), where h(·) is an arbitrary function of unknown form.

The test is more general than is may appear from the regression that is used.

Plotting the residuals A very simple method is to simply plot the residuals (or their

squares). Draw pictures here. Like the Goldfeld-Quandt test, this will be more in-

formative if the observations are ordered according to the suspected form of the het-

eroscedasticity.
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7.4.3 Correction

Correcting for heteroscedasticity requires that a parametric form for Σ(θ) be supplied,

and that a means for estimating θ consistently be determined. The estimation method

will be specific to the for supplied for Σ(θ). We’ll consider two examples. Before this,

let’s consider the general nature of GLS when there is heteroscedasticity.

Multiplicative heteroscedasticity Suppose the model is

yt = x′tβ+ εt

σ2
t = E(ε2

t ) = (z′tγ)
δ

but the other classical assumptions hold. In this case

ε2
t =

(
z′tγ
)δ

+ vt

and vt has mean zero. Nonlinear least squares could be used to estimate γ and δ con-

sistently, were εt observable. The solution is to substitute the squared OLS residuals

ε̂2
t in place of ε2

t , since it is consistent by the Slutsky theorem. Once we have γ̂ and δ̂,

we can estimate σ2
t consistently using

σ̂2
t =

(
z′t γ̂
)δ̂

p

→ σ2
t .

In the second step, we transform the model by dividing by the standard deviation:

yt

σ̂t
=

x′tβ
σ̂t

+
εt

σ̂t
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or

y∗t = x∗′t β+ ε∗t .

Asymptotically, this model satisfies the classical assumptions.

• This model is a bit complex in that NLS is required to estimate the model of the

variance. A simpler version would be

yt = x′tβ+ εt

σ2
t = E(ε2

t ) = σ2zδ
t

where zt is a single variable. There are still two parameters to be estimated,

and the model of the variance is still nonlinear in the parameters. However,

the search method can be used in this case to reduce the estimation problem to

repeated applications of OLS.

• First, we define an interval of reasonable values for δ, e.g., δ ∈ [0,3].

• Partition this interval into M equally spaced values, e.g., {0, .1, .2, ...,2.9,3}.

• For each of these values, calculate the variable zδm
t .

• The regression

ε̂2
t = σ2zδm

t + vt

is linear in the parameters, conditional on δm, so one can estimate σ2 by OLS.

• Save the pairs (σ2
m,δm), and the corresponding ESSm. Choose the pair with the

minimum ESSm as the estimate.

• Next, divide the model by the estimated standard deviations.
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• Can refine. Draw picture.

• Works well when the parameter to be searched over is low dimensional, as in

this case.

Groupwise heteroscedasticity A common case is where we have repeated observa-

tions on each of a number of economic agents: e.g., 10 years of macroeconomic data

on each of a set of countries or regions, or daily observations of transactions of 200

banks. This sort of data is a pooled cross-section time-series model. It may be reason-

able to presume that the variance is constant over time within the cross-sectional units,

but that it differs across them (e.g., firms or countries of different sizes...). The model

is

yit = x′itβ+ εit

E(ε2
it) = σ2

i ,∀t

where i = 1,2, ...,G are the agents, and t = 1,2, ...,n are the observations on each agent.

• The other classical assumptions are presumed to hold.

• In this case, the variance σ2
i is specific to each agent, but constant over the n

observations for that agent.

• In this model, we assume that E(εitεis) = 0. This is a strong assumption that

we’ll relax later.

To correct for heteroscedasticity, just estimate each σ2
i using the natural estimator:

σ̂2
i =

1
n

n

∑
t=1

ε̂2
it
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• Note that we use 1/n here since it’s possible that there are more than n regressors,

so n−K could be negative. Asymptotically the difference is unimportant.

• With each of these, transform the model as usual:

yit

σ̂i
=

x′itβ
σ̂i

+
εit

σ̂i

Do this for each cross-sectional group. This transformed model satisfies the

classical assumptions, asymptotically.

7.5 Autocorrelation

Autocorrelation, which is the serial correlation of the error term, is a problem that is

usually associated with time series data, but also can affect cross-sectional data. For

example, a shock to oil prices will simultaneously affect all countries, so one could

expect contemporaneous correlation of macroeconomic variables across countries.

7.5.1 Causes

Autocorrelation is the existence of correlation across the error term:

E(εtεs) 6= 0, t 6= s.

Why might this occur? Plausible explanations include

1. Lags in adjustment to shocks. In a model such as

yt = x′tβ+ εt,

one could interpret x′tβ as the equilibrium value. Suppose xt is constant over

88



a number of observations. One can interpret εt as a shock that moves the sys-

tem away from equilibrium. If the time needed to return to equilibrium is long

with respect to the observation frequency, one could expect εt+1 to be positive,

conditional on εt positive, which induces a correlation.

2. Unobserved factors that are correlated over time. The error term is often as-

sumed to correspond to unobservable factors. If these factors are correlated,

there will be autocorrelation.

3. Misspecification of the model. Suppose that the DGP is

yt = β0 +β1xt +β2x2
t + εt

but we estimate

yt = β0 +β1xt + εt

Draw a picture here.

7.5.2 AR(1)

There are many types of autocorrelation. We’ll consider two examples. The first is the

most commonly encountered case: autoregressive order 1 (AR(1) errors. The model is

yt = x′tβ+ εt

εt = ρεt−1 +ut

ut ∼ iid(0,σ2
u)

E(εtus) = 0, t < s

We assume that the model satisfies the other classical assumptions.
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• We need a stationarity assumption: |ρ| < 1. Otherwise the variance of εt ex-

plodes as t increases, so standard asymptotics will not apply.

• By recursive substitution we obtain

εt = ρεt−1 +ut

= ρ(ρεt−2 +ut−1)+ut

= ρ2εt−2 +ρut−1 +ut

= ρ2 (ρεt−3 +ut−2)+ρut−1 +ut

In the limit the lagged ε drops out, since ρm → 0 as m → ∞, so we obtain

εt =
∞

∑
m=0

ρmut−m

With this, the variance of εt is found as

E(ε2
t ) = σ2

u ∑∞
m=0 ρ2m

=
σ2

u
1−ρ2

• If we had directly assumed that εt were covariance stationary, we could obtain

this using

V (εt) = ρ2E(ε2
t−1)+2ρE(εt−1ut)+E(u2

t )

= ρ2V (εt)+σ2
u,

so

V (εt) =
σ2

u

1−ρ2
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• The variance is the 0th order autocovariance: γ0 = V (εt)

• Note that the variance does not depend on t

Likewise, the first order autocovariance γ1 is

Cov(εt,εt−1) = γs = E((ρεt−1 +ut)εt−1)

= ρV (εt)

=
ρσ2

u
1−ρ2

• Using the same method, we find that for s < t

Cov(εt,εt−s) = γs =
ρsσ2

u

1−ρ2

• The autocovariances don’t depend on t: the process {εt} is covariance stationary

The correlation (in general, for r.v.’s x and y) is defined as

corr(x,y) =
cov(x,y)

se(x)se(y)

but in this case, the two standard errors are the same, so the s-order autocorrelation ρs

is

ρs = ρs
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• All this means that the overall matrix Σ has the form

Σ =
σ2

u

1−ρ2
︸ ︷︷ ︸

this is the variance




1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
. . .

...

. . . ρ

ρn−1 · · · 1




︸ ︷︷ ︸
this is the correlation matrix

So we have homoscedasticity, but elements off the main diagonal are not zero.

All of this depends only on two parameters, ρ and σ2
u. If we can estimate these

consistently, we can apply FGLS.

It turns out that it’s easy to estimate these consistently. The steps are

1. Estimate the model yt = x′tβ + εt by OLS. This is consistent as long as 1
nX ′ΣX

converges to a finite limiting matrix. It turns out that this requires that the re-

gressors X satisfy the previous stationarity conditions and that |ρ|< 1, which we

have assumed.

2. Take the residuals, and estimate the model

ε̂t = ρε̂t−1 +u∗t

Since ε̂t
p→ εt , this regression is asymptotically equivalent to the regression

εt = ρεt−1 +ut

which satisfies the classical assumptions. Therefore, ρ̂ obtained by applying
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OLS to ε̂t = ρε̂t−1 +u∗t is consistent. Also, since u∗t
p→ ut , the estimator

σ̂2
u =

1
n

n

∑
t=2

(û∗t )
2 p→ σ2

u

3. With the consistent estimators σ̂2
u and ρ̂, form Σ̂ = Σ(σ̂2

u, ρ̂) using the previous

structure of Σ, and estimate by FGLS. Actually, one can omit the factor σ̂2
u/(1−

ρ2), since it cancels out in the formula

β̂FGLS =
(
X ′Σ̂−1X

)−1
(X ′Σ̂−1y).

• One can iterate the process, by taking the first FGLS estimator of β, re-estimating

ρ and σ2
u, etc. If one iterates to convergences it’s equivalent to MLE (supposing

normal errors).

• An asymptotically equivalent approach is to simply estimate the transformed

model

yt − ρ̂yt−1 = (xt − ρ̂xt−1)
′β+u∗t

using n− 1 observations (since y0 and x0 aren’t available). This is the method

of Cochrane and Orcutt. Dropping the first observation is asymptotically irrele-

vant, but it can be very important in small samples. One can recuperate the first

observation by putting

y∗1 =
√

1− ρ̂2y1

x∗1 =
√

1− ρ̂2x1

This somewhat odd result is related to the Cholesky factorization of Σ−1. See

Davidson and MacKinnon, pg. 348-49 for more discussion. Note that the vari-
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ance of y∗1 is σ2
u, asymptotically, so we see that the transformed model will be

homoscedastic (and nonautocorrelated, since the u′s are uncorrelated with the

y′s, in different time periods.

7.5.3 MA(1)

The linear regression model with moving average order 1 errors is

yt = x′tβ+ εt

εt = ut +φut−1

ut ∼ iid(0,σ2
u)

E(εtus) = 0, t < s

In this case,

V (εt) = γ0 = E
[
(ut +φut−1)

2
]

= σ2
u +φ2σ2

u

= σ2
u(1+φ2)

Similarly

γ1 = E [(ut +φut−1)(ut−1 +φut−2)]

= φσ2
u
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and

γ2 = [(ut +φut−1)(ut−2 +φut−3)]

= 0

so in this case

Σ = σ2
u




1+φ2 φ 0 · · · 0

φ 1+φ2 φ

0 φ . . .
...

...
. . . φ

0 · · · φ 1+φ2




Note that the first order autocorrelation is

ρ1 =
φσ2

u
σ2

u(1+φ2)
=

γ1

γ0

= φ
(1+φ2)

• This achieves a maximum at φ = 1 and a minimum at φ = −1, and the maximal

and minimal autocorrelations are 1/2 and -1/2. Therefore, series that are more

strongly autocorrelated can’t be MA(1) processes.

Again the covariance matrix has a simple structure that depends on only two parame-

ters. The problem in this case is that one can’t estimate φ using OLS on

ε̂t = ut +φut−1

because the ut are unobservable and they can’t be estimated consistently. However,

there is a simple way to estimate the parameters.
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• Since the model is homoscedastic, we can estimate

V (εt) = σ2
ε = σ2

u(1+φ2)

using the typical estimator:

σ̂2
ε =

�

σ2
u(1+φ2) =

1
n

n

∑
t=1

ε̂2
t

• By the Slutsky theorem, we can interpret this as defining an (unidentified) esti-

mator of both σ2
u and φ, e.g., use this as

σ̂2
u(1+ φ̂2) =

1
n

n

∑
t=1

ε̂2
t

However, this isn’t sufficient to define consistent estimators of the parameters,

since it’s unidentified.

• To solve this problem, estimate the covariance of εt and εt−1 using

Ĉov(εt ,εt−1) = φ̂σ2
u =

1
n

n

∑
t=2

ε̂t ε̂t−1

This is a consistent estimator, following a LLN (and given that the epsilon hats

are consistent for the epsilons). As above, this can be interpreted as defining an

unidentified estimator:

φ̂σ̂2
u =

1
n

n

∑
t=2

ε̂t ε̂t−1

• Now solve these two equations to obtain identified (and therefore consistent)
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estimators of both φ and σ2
u. Define the consistent estimator

Σ̂ = Σ(φ̂, σ̂2
u)

following the form we’ve seen above, and transform the model using the Cholesky

decomposition. The transformed model satisfies the classical assumptions asymp-

totically.

7.5.4 Asymptotically valid inferences with autocorrelation of unknown form

See Hamilton Ch. 10, pp. 261-2 and 280-84.

When the form of autocorrelation is unknown, one may decide to use the OLS es-

timator, without correction. We’ve seen that this estimator has the limiting distribution

√
n
(

β̂−β
)

d→ N
(

0,Q−1
X ΩQ−1

X

)

where, as before, Ω is

Ω = lim
n→∞

E
(

X ′εε′X
n

)

We need a consistent estimate of Ω. Define mt = xtεt (recall that xt is defined as a

K ×1 vector). Note that

X ′ε =

[
x1 x2 · · · xn

]




ε1

ε2

...

εn




= ∑n
t=1 xtεt

= ∑n
t=1 mt
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so that

Ω = lim
n→∞

1
n

E

[(
n

∑
t=1

mt

)(
n

∑
t=1

m′
t

)]

We assume that mt is covariance stationary (so that the covariance between mt and

mt−s does not depend on t).

Define the v− th autocovariance of mt as

Γv = E(mtm
′
t−v).

Note that E(mtm′
t+v) = Γ′

v. (show this with an example). In general, we expect that:

• mt will be autocorrelated, since εt is potentially autocorrelated:

Γv = E(mtm
′
t−v) 6= 0

Note that this autocovariance does not depend on t, due to covariance stationar-

ity.

• contemporaneously correlated ( E(mitm jt) 6= 0 ), since the regressors in xt will

in general be correlated (more on this later).

• and heteroscedastic (E(m2
it) = σ2

i , which depends upon i ), again since the re-

gressors will have different variances.

While one could estimate Ω parametrically, we in general have little information upon

which to base a parametric specification. Recent research has focused on consistent

nonparametric estimators of Ω.

Now define

Ωn = E 1
n

[(
n

∑
t=1

mt

)(
n

∑
t=1

m′
t

)]
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We have (show that the following is true, by expanding sum and shifting rows to left)

Ωn = Γ0 +
n−1

n

(
Γ1 +Γ′

1

)
+

n−2
n

(
Γ2 +Γ′

2

)
· · ·+ 1

n

(
Γn−1 +Γ′

n−1

)

The natural, consistent estimator of Γv is

Γ̂v =
1
n

n

∑
t=v+1

m̂tm̂
′
t−v.

where

m̂t = xt ε̂t

(note: one could put 1/(n− v) instead of 1/n here). So, a natural, but inconsistent,

estimator of Ωn would be

Ω̂n = Γ̂0 + n−1
n

(
Γ̂1 + Γ̂′

1

)
+ n−2

n

(
Γ̂2 + Γ̂′

2

)
+ · · ·+ 1

n

(
Γ̂n−1 + Γ̂′

n−1

)

= Γ̂0 +∑n−1
v=1

n−v
n

(
Γ̂v + Γ̂′

v

)
.

This estimator is inconsistent in general, since the number of parameters to estimate is

more than the number of observations, and increases more rapidly than n, so informa-

tion does not build up as n → ∞.

On the other hand, supposing that Γv tends to zero sufficiently rapidly as v tends to

∞, a modified estimator

Ω̂n = Γ̂0 +
q(n)

∑
v=1

(
Γ̂v + Γ̂′

v

)
,

where q(n)
p→ ∞ as n → ∞ will be consistent, provided q(n) grows sufficiently slowly.

• The assumption that autocorrelations die off is reasonable in many cases. For

example, the AR(1) model with |ρ| < 1 has autocorrelations that die off.
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• The term n−v
n can be dropped because it tends to one for v < q(n), given that

q(n) increases slowly relative to n.

• A disadvantage of this estimator is that is may not be positive definite. This

could cause one to calculate a negative χ2 statistic, for example!

• Newey and West proposed and estimator (Econometrica, 1987) that solves the

problem of possible nonpositive definiteness of the above estimator. Their esti-

mator is

Ω̂n = Γ̂0 +
q(n)

∑
v=1

[
1− v

q+1

](
Γ̂v + Γ̂′

v

)
.

This estimator is p.d. by construction. The condition for consistency is that

n−1/4q(n) → 0. Note that this is a very slow rate of growth for q. This estimator

is nonparametric - we’ve placed no parametric restrictions on the form of Ω. It

is an example of a kernel estimator.

Finally, since Ωn has Ω as its limit, Ω̂n
p→ Ω. We can now use Ω̂n and Q̂X = 1

n X ′X to

consistently estimate the limiting distribution of the OLS estimator under heteroscedas-

ticity and autocorrelation of unknown form. With this, asymptotically valid tests are

constructed in the usual way.

7.5.5 Testing for autocorrelation

Durbin-Watson test The Durbin-Watson test statistic is

DW = ∑n
t=2(ε̂t−ε̂t−1)

2

∑n
t=1 ε̂2

t

=
∑n

t=2(ε̂2
t −2ε̂t ε̂t−1+ε̂2

t−1)
∑n

t=1 ε̂2
t

• The null hypothesis is that the first order autocorrelation of the errors is zero:

H0 : ρ1 = 0. The alternative is of course HA : ρ1 6= 0. Note that the alternative
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is not that the errors are AR(1), since many general patterns of autocorrelation

will have the first order autocorrelation different than zero. For this reason the

test is useful for detecting autocorrelation in general. For the same reason, one

shouldn’t just assume that an AR(1) model is appropriate when the DW test

rejects the null.

• Under the null, the middle term tends to zero, and the other two tend to one, so

DW
p→ 2.

• .Supposing that we had an AR(1) error process with ρ = 1. In this case the

middle term tends to −2, so DW
p→ 0

• Supposing that we had an AR(1) error process with ρ = −1. In this case the

middle term tends to 2, so DW
p→ 4

• These are the extremes: DW always lies between 0 and 4.

• The distribution depends on the matrix of regressors, X , so tables can’t give

exact critical values. The give upper and lower bounds, which correspond to the

extremes that are possible. Picture here. There are means of determining exact

critical values conditional on X .

• Note that DW can be used to test for nonlinearity (add discussion).

Breusch-Godfrey test This test uses an auxiliary regression, as does the White test

for heteroscedasticity. The regression is

ε̂t = x′tδ+ γ1ε̂t−1 + γ2ε̂t−2 + · · ·+ γPε̂t−P + vt

and the test statistic is the nR2 statistic, just as in the White test. There are P restric-

tions, so the test statistic is asymptotically distributed as a χ2(P).
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• The intuition is that the lagged errors shouldn’t contribute to explaining the cur-

rent error if there is no autocorrelation.

• xt is included as a regressor to account for the fact that the ε̂t are not independent

even if the εt are. This is a technicality that we won’t go into here.

• The alternative is not that the model is an AR(P), following the argument above.

The alternative is simply that some or all of the first P autocorrelations are differ-

ent from zero. This is compatible with many specific forms of autocorrelation.

7.5.6 Lagged dependent variables and autocorrelation

We’ve seen that the OLS estimator is consistent under autocorrelation, as long as

plimX ′ε
n = 0. This will be the case when E(X ′ε) = 0, following a LLN. An important

exception is the case where X contains lagged y′s and the errors are autocorrelated. A

simple example is the case of a single lag of the dependent variable with AR(1) errors.

The model is

yt = x′tβ+ yt−1γ+ εt

εt = ρεt−1 +ut

Now we can write

E(yt−1εt) = E
{
(x′t−1β+ yt−2γ+ εt−1)(ρεt−1 +ut)

}

6= 0

since one of the terms is E(ρε2
t−1) which is clearly nonzero. In this case E(X ′ε) 6= 0,

and therefore plimX ′ε
n 6= 0. Since
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plimβ̂ = β+ plim
X ′ε
n

the OLS estimator is inconsistent in this case. One needs to estimate by instrumental

variables (IV), which we’ll get to later.
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8 Stochastic regressors

Up until now we’ve assumed that the regressors are nonstochastic. This is highly

unrealistic in the case of economic data.

There are several ways to think of the problem. First, if we are interested in an anal-

ysis conditional on the explanatory variables, then it is irrelevant if they are stochastic

or not, since conditional on the values of they regressors take on, they are nonstochas-

tic, which is the case already considered.

• In cross-sectional analysis it is usually reasonable to make the analysis condi-

tional on the regressors.

• In dynamic models, where yt may depend on yt−1, a conditional analysis is not

sufficiently general, since we may want to predict into the future many periods

out, so we need to consider the behavior of β̂ and the relevant test statistics

unconditional on X .

The model we’ll deal with is

1. Linearity: the model is a linear function of the parameter vector β0 :

yt = x′tβ0 + εt ,

or in matrix form,

y = Xβ0 + ε,

where y is n×1, X =

(
x1 x2 · · · xn

)′
, where xt is K×1, and β0 and ε are

conformable.
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(a) IID mean zero errors:

E(ε) = 0

E(εε′) = σ2
0In

(b) Stochastic, linearly independent regressors

• X has rank K with probability 1

• X is stochastic

• X is uncorrelated with ε : E(X ′ε) = 0.

• limn→∞ Pr
(

1
nX ′X = QX

)
= 1, where QX is a finite positive definite ma-

trix.

• n−1/2X ′ε d→ N(0,QXσ2
0)

(c) Normality (Optional): ε is normally distributed

8.1 Case 1

Normality of ε, X independent of ε

In this case,

β̂ = β0 +(X ′X)−1X ′ε

Due to of independence of X and ε

E(β̂) = β0 +E
(
(X ′X)−1X ′)E(ε)

= β0

Conditional on X ,

β̂|X ∼ N
(
0,(X ′X)−1σ2

0

)
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• If the density of X is dµ(X), the marginal density of β̂ is obtained by multiplying

the conditional density by dµ(X) and integrating over X . Doing this leads to a

nonnormal density for β̂, in small samples.

• However, conditional on X , the usual test statistics have the t, F and χ2 distribu-

tions. Importantly, these distributions don’t depend on X , so when marginalizing

to obtain the unconditional distribution, nothing changes. The tests are valid in

small samples.

• Summary: When X is stochastic and uncorrelated with ε and ε is normally dis-

tributed:

1. β̂ is unbiased

2. β̂ is nonnormally distributed

3. The usual test statistics have the same distribution as with nonstochastic X .

4. The Gauss-Markov theorem still holds, since it holds conditionally on X ,

and this is true for all X .

5. Asymptotic properties are treated in the next section.

8.2 Case 2

ε nonnormally distributed, independent of X

The unbiasedness of β̂ carries through as before. However, the argument regarding

test statistics doesn’t hold, due to nonnormality of ε. Still, we have

β̂ = β0 +(X ′X)−1X ′ε

= β0 +

(
X ′X

n

)−1 X ′ε
n
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Now (
X ′X

n

)−1
p→ Q−1

X

by assumption, and
X ′ε
n

=
n−1/2X ′ε√

n
p→ 0

since the numerator converges to a N(0,QXσ2) r.v. and the denominator still goes

to infinity. We have unbiasedness and the variance disappearing, so, the estimator is

consistent:

β̂ p→ β0.

Considering the asymptotic distribution

√
n
(

β̂−β0

)
=

√
n

(
X ′X

n

)−1 X ′ε
n

=

(
X ′X

n

)−1

n−1/2X ′ε

so
√

n
(

β̂−β0

)
d→ N(0,Q−1

X σ2
0)

directly following the assumptions. Asymptotic normality of the estimator still holds.

Since the asymptotic results on all test statistics only require this, all the previous

asymptotic results on test statistics are also valid in this case.

• Summary: Under stochastic regressors that are independent of ε, with ε normal

or nonnormal, β̂ has the properties:

1. Unbiasedness

2. Consistency

3. Gauss-Markov theorem holds, since it holds in the previous case and doesn’t
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depend on normality.

4. Asymptotic normality

5. Tests are asymptotically valid, but are not valid in small samples.

8.3 Case 3

Lagged dependent variables (dynamic models).

An important class of models are dynamic models, where lagged dependent vari-

ables have an impact on the current value. A simple version of these models that

captures the important points is

yt = z′tα+
p

∑
s=1

γsyt−s + εt

= x′tβ+ εt

ε ∼ iid(0,σ2
0In)

where now xt contains lagged dependent variables. Clearly X and ε aren’t independent

anymore, so one can’t show unbiasedness. For example, consider

E(εt−1xt) 6= 0

since xt contains yt−1 (which is a function of εt−1) as an element.

• This fact implies that all of the small sample properties such as unbiasedness,

Gauss-Markov theorem, and small sample validity of test statistics do not hold

in this case.

• Nevertheless, under the above assumptions, all asymptotic properties continue

to hold, using the same arguments as before.
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8.4 When are the assumptions reasonable?

The two assumptions we’ve added are

1. limn→∞ Pr
(

1
nX ′X = QX

)
= 1, a QX finite positive definite matrix.

2. n−1/2X ′ε d→ N(0,QXσ2
0)

The most complicated case is that of dynamic models, since the other cases can be

treated as nested in this case. There exist a number of central limit theorems for de-

pendent processes, many of which are fairly technical. We won’t enter into details

(see Hamilton, Chapter 7 if you’re interested). A main requirement for use of standard

asymptotics for a dependent sequence

{st} = {1
n

n

∑
t=1

zt}

to converge in probability to a finite limit is that zt be stationary, in some sense.

• Strong stationarity requires that the joint distribution of the set

{zt ,zt+s,zt−q, ...}

not depend on t.

• Covariance (weak) stationarity requires that the first and second moments of this

set not depend on t.

• An example of a sequence that doesn’t satisfy this is an AR(1) process with a

unit root (a random walk):

xt = xt−1 + εt

εt ∼ IIN(0,σ2)
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One can show that the variance of xt depends upon t in this case.

Stationarity prevents the process from trending off to plus or minus infinity, and pre-

vents cyclical behavior which would allow correlations between far removed zt znd zs

to be high. Draw a picture here.

For application of central limit theorems, a useful concept is that of a martingale

difference sequence. This is a sequence {zt} such that

E(zt |Ωt−1) = 0,

where Ωt is the information set in period t. At a minimum, Ωt includes all zs for

s = 1,2, ..., t. Note that

x′tεt

is a martingale difference sequence. Hamilton, Proposition 7.8 (pg. 193) gives a cen-

tral limit theorem for covariance stationary martingale difference sequences.

• In summary, the assumptions are reasonable when the stochastic conditioning

variables have variances that are finite, and are not too strongly dependent. The

AR(1) model with unit root is an example of a case where the dependence is too

strong for standard asymptotics to apply.

• The econometrics of nonstationary processes has been an active area of research

in the last two decades. The standard asymptotics don’t apply in this case. This

isn’t in the scope of this course.
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9 Data problems

In this section well consider problems associated with the regressor matrix: collinear-

ity, missing observation and measurement error.

9.1 Collinearity

Collinearity is the existence of linear relationships amongst the regressors. We can

always write

λ1x1 +λ2x2 + · · ·+λKxK + v = 0

where xi is the ith column of the regressor matrix X , and v is an n× 1 vector. In the

case that there exists collinearity, the variation in v is relatively small, so that there is

an approximately exact linear relation between the regressors.

• “relative” and “approximate” are imprecise, so it’s difficult to define when collinearilty

exists.

In the extreme, if there are exact linear relationships (every element of v equal) then

ρ(X) < K, so ρ(X ′X) < K, so X ′X is not invertible and the OLS estimator is not

uniquely defined. For example, if the model is

yt = β1 +β2x2t +β3x3t + εt

x2t = α1 +α2x3t
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then we can write

yt = β1 +β2 (α1 +α2x3t)+β3x3t + εt

= β1 +β2α1 +β2α2x3t +β3x3t + εt

= (β1 +β2α1)+(β2α2 +β3)x3t

= γ1 + γ2x3t + εt

• The γ′s can be consistently estimated, but since the γ′s define two equations in

three β′s, the β′s can’t be consistently estimated (there are multiple values of β

that solve the fonc). The β′s are unidentified in the case of perfect collinearity.

• Perfect collinearity is unusual, except in the case of an error in construction of

the regressor matrix, such as including the same regressor twice.

Another case where perfect collinearity may be encountered is with models with dummy

variables, if one is not careful. Consider a model of rental price (yi) of an apartment.

This could depend factors such as size, quality etc., collected in xi, as well as on the

location of the apartment. Let Bi = 1 if the ith apartment is in Barcelona, Bi = 0 other-

wise. Similarly, define Gi, Ti and Li for Girona, Tarragona and Lleida. One could use

a model such as

yi = β1 +β2Bi +β3Gi +β4Ti +β5Li + x′iγ+ εi

In this model, Bi +Gi +Ti +Li = 1, ∀i, so there is an exact relationship between these

variables and the column of ones corresponding to the constant. One must either drop

the constant, or one of the qualitative variables.
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9.1.1 A brief aside on dummy variables

Introduce a brief discussion of dummy variables here.

9.1.2 Back to collinearity

The more common case, if one doesn’t make mistakes such as these, is the existence

of inexact linear relationships, i.e., correlations between the regressors that are less

than one in absolute value, but not zero. The basic problem is that when two (or more)

variables move together, it is difficult to determine their separate influences. This is

reflected in imprecise estimates, i.e., estimates with high variances. With economic

data, collinearity is commonly encountered, and is often a severe problem.

To see the effect of collinearity on variances, partition the regressor matrix as

X =

[
x W

]

where x is the first column of X (note: we can interchange the columns of X isf we like,

so there’s no loss of generality in considering the first column). Now, the variance of

β̂, under the classical assumptions, is

V (β̂) =
(
X ′X

)−1 σ2

Using the partition,

X ′X =




x′x x′W

W ′x W ′W
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and following a rule for partitioned inversion,

(
X ′X

)−1
1,1 =

(
x′x−x′W (W ′W )−1W ′x

)−1

=
(

x′
(

In −W (W ′W )
′1W ′

)
x
)−1

=
(
ESSx|W

)−1

where by ESSx|W we mean the error sum of squares obtained from the regression

x = W λ+ v.

Since

R2 = 1−ESS/TSS,

we have

ESS = T SS(1−R2)

so the variance of the coefficient corresponding to x is

V (β̂x) =
σ2

T SSx(1−R2
x|W )

We see three factors influence the variance of this coefficient. It will be high if

1. σ2 is large

2. There is little variation in x. Draw a picture here.

3. There is a strong linear relationship between x and the other regressors, so that

W can explain the movement in x well. In this case, R2
x|W will be close to 1. As

R2
x|W → 1,V (β̂x) → ∞.

The last of these cases is collinearity.
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Intuitively, when there are strong linear relations between the regressors, it is dif-

ficult to determine the separate influence of the regressors on the dependent variable.

This can be seen by comparing the OLS objective function in the case of no correlation

between regressors with the objective function with correlation between the regressors.

See the figures nocollin.ps (no correlation) and collin.ps (correlation), available on the

web site.

9.1.3 Detection of collinearity

The best way is simply to regress each explanatory variable in turn on the remaining

regressors. If any of these auxiliary regressions has a high R2, there is a problem of

collinearity. Furthermore, this procedure identifies which parameters are affected.

• Sometimes, we’re only interested in certain parameters. Collinearity isn’t a

problem if it doesn’t affect what we’re interested in estimating.

An alternative is to examine the matrix of correlations between the regressors. High

correlations are sufficient but not necessary for severe collinearity.

Also indicative of collinearity is that the model fits well (high R2), but none of the

variables is significantly different from zero (e.g., their separate influences aren’t well

determined).

In summary, the artificial regressions are the best approach if one wants to be care-

ful.

9.1.4 Dealing with collinearity

More information Collinearity is a problem of an uninformative sample. The first

question is: is all the available information being used? Is more data available? Are
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there coefficient restrictions that have been neglected? Picture illustrating how a re-

striction can solve problem of perfect collinearity.

Stochastic restrictions and ridge regression Supposing that there is no more data

or neglected restrictions, one possibility is to change perspectives, to Bayesian econo-

metrics. One can express prior beliefs regarding the coefficients using stochastic re-

strictions. A stochastic linear restriction would be something of the form

Rβ = r + v

where R and r are as in the case of exact linear restrictions, but v is a random vector.

For example, the model could be

y = Xβ+ ε

Rβ = r + v


ε

v


 ∼ N




0

0


 ,




σ2
εIn 0n×q

0q×n σ2
vIq




This sort of model isn’t in line with the classical interpretation of parameters as con-

stants: according to this interpretation the left hand side of Rβ = r + v is constant

but the right is random. This model does fit the Bayesian perspective: we combine

information coming from the model and the data, summarized in

y = Xβ+ ε

ε ∼ N(0,σ2
εIn)

with prior beliefs regarding the distribution of the parameter, summarized in
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Rβ ∼ N(r,σ2
vIq)

Since the sample is random it is reasonable to suppose that E(εv′) = 0, which is the

last piece of information in the specification. How can you estimate using this model?

The solution is to treat the restrictions as artificial data. Write




y

r


=




X

R


β+




ε

v




This model is heteroscedastic, since σ2
ε 6= σ2

v . Define the prior precision k = σε/σv.

This expresses the degree of belief in the restriction relative to the variability of the

data. Supposing that we specify k, then the model




y

kr


=




X

kR


β+




ε

kv




is homoscedastic and can be estimated by OLS. Note that this estimator is biased. It

is consistent, however, given that k is a fixed constant, even if the restriction is false

(this is in contrast to the case of false exact restrictions). To see this, note that there

are Q restrictions, where Q is the number of rows of R. As n → ∞, these Q artificial

observations have no weight in the objective function, so the estimator has the same

limiting objective function as the OLS estimator, and is therefore consistent.

To motivate the use of stochastic restrictions, consider the expectation of the squared
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length of β̂:

E(β̂′β̂) = E
{(

β+(X ′X)−1 X ′ε
)′(

β+(X ′X)−1 X ′ε
)}

= β′β+E
(
ε′X(X ′X)−1(X ′X)−1X ′ε

)

= β′β+Tr (X ′X)−1 σ2

= β′β+σ2 ∑K
i=1 λi(the trace is the sum of eigenvalues)

> β′β+λmax(X ′X−1)σ2(the eigenvalues are all positive, sinceX ′X is p.d.

so

E(β̂′β̂) > β′β+
σ2

λmin(X ′X)

where λmin(X ′X) is the minimum eigenvalue of X ′X (which is the inverse of the maxi-

mum eigenvalue of (X ′X)−1). As collinearity becomes worse and worse, X ′X becomes

more nearly singular, so λmin(X ′X) tends to zero (recall that the determinant is the prod-

uct of the eigenvalues) and E(β̂′β̂) tends to infinite. On the other hand, β′β is finite.

Now considering the restriction IKβ = 0 + v. With this restriction the model be-

comes 


y

0


=




X

kIK


β+




ε

kv




and the estimator is

β̂ridge =



[

X ′ kIK

]



X

kIK







−1[
X ′ IK

]



y

0




=
(
X ′X + k2IK

)−1
X ′y

This is the ordinary ridge regression estimator. The ridge regression estimator can be

seen to add k2IK, which is nonsingular, to X ′X , which is more and more nearly singular
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as collinearity becomes worse and worse. As k → ∞, the restrictions tend to β = 0,

that is, the coefficients are shrunken toward zero. Also, the estimator tends to

β̂ridge =
(
X ′X + k2IK

)−1
X ′y →

(
k2IK

)−1
X ′y =

X ′y
k2 → 0

so β̂′
ridgeβ̂ridge → 0. This is clearly a false restriction in the limit, if our original model

is at al sensible.

There should be some amount of shrinkage that is in fact a true restriction. The

problem is to determine the k such that the restriction is correct. The interest in

ridge regression centers on the fact that it can be shown that there exists a k such

that MSE(β̂ridge) < β̂OLS. The problem is that this k depends on β and σ2, which are

unknown.

The ridge trace method plots β̂′
ridgeβ̂ridge as a function of k, and chooses the value

of k that “artistically” seems appropriate (e.g., where the effect of increasing k dies

off). Draw picture here. This means of choosing k is obviously subjective. This is not

a problem from the Bayesian perspective: the choice of k reflects prior beliefs about

the length of β.

In summary, the ridge estimator offers some hope, but it is impossible to guarantee

that it will outperform the OLS estimator. Collinearity is a fact of life in econometrics,

and there is no clear solution to the problem.

9.2 Measurement error

Measurement error is exactly what it says, either the dependent variable or the regres-

sors are measured with error. Thinking about the way economic data are reported,

measurement error is probably quite prevalent. For example, estimates of growth of

GDP, inflation, etc. are commonly revised several times. Why should the last revision
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necessarily be correct?

9.2.1 Error of measurement of the dependent variable

Measurement errors in the dependent variable and the regressors have important dif-

ferences. First consider error in measurement of the dependent variable. The data

generating process is presumed to be

y∗ = Xβ+ ε

y = y∗ + v

vt ∼ iid(0,σ2
v)

where y∗ is the unobservable true dependent variable, and y is what is observed. We

assume that ε and v are independent and that y∗ = Xβ + ε satisfies the classical as-

sumptions. Given this, we have

y+ v = Xβ+ ε

so

y = Xβ+ ε− v

= Xβ+ω

ωt ∼ iid(0,σ2
ε +σ2

v)

• As long as v is uncorrelated with X , this model satisfies the classical assumptions

and can be estimated by OLS. This type of measurement error isn’t a problem,

then.
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9.2.2 Error of measurement of the regressors

The situation isn’t so good in this case. The DGP is

yt = x∗′t β+ εt

xt = x∗t + vt

vt ∼ iid(0,Σv)

where Σv is a K ×K matrix. Now X∗ contains the true, unobserved regressors, and

X is what is observed. Again assume that v is independent of ε, and that the model

y = X∗β+ ε satisfies the classical assumptions. Now we have

yt = (xt − vt)
′β+ εt

= x′tβ− v′tβ+ εt

= x′tβ+ωt

The problem is that now there is a correlation between xt and ωt , since

E(xtωt) = E ((x∗t + vt)(−v′tβ+ εt))

= −Σvβ

where

Σv = E
(
vtv

′
t

)
.

Because of this correlation, the OLS estimator is biased and inconsistent, just as in

the case of autocorrelated errors with lagged dependent variables. In matrix notation,

write the estimated model as

y = Xβ+ω
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We have that

β̂ =

(
X ′X

n

)−1(X ′y
n

)

and

plim

(
X ′X

n

)−1

= plim (X∗′+V ′)(X∗+V )
n

= (QX∗ +Σv)
−1

since X∗ and V are independent, and

plim
V ′V

n
= limE 1

n ∑n
t=1 vtv′t

= Σv

Likewise,

plim

(
X ′y
n

)
= plim (X∗′+V ′)(X∗β+ε)

n

= QX∗β

so

plimβ̂ = (QX∗ +Σv)
−1 QX∗β

So we see that the least squares estimator is inconsistent when the regressors are mea-

sured with error.

• A potential solution to this problem is the instrumental variables (IV) estimator,

which we’ll discuss shortly.
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9.3 Missing observations

Missing observations occur quite frequently: time series data may not be gathered in a

certain year, or respondents to a survey may not answer all questions. We’ll consider

two cases: missing observations on the dependent variable and missing observations

on the regressors.

9.3.1 Missing observations on the dependent variable

In this case, we have

y = Xβ+ ε

or 


y1

y2


=




X1

X2


β+




ε1

ε2




where y2 is not observed. Otherwise, we assume the classical assumptions hold.

• A clear alternative is to simply estimate using the compete observations

y1 = X1β+ ε1

Since these observations satisfy the classical assumptions, one could estimate by

OLS.

• The question remains whether or not one could somehow replace the unobserved

y2 by a predictor, and improve over OLS in some sense. Let ŷ2 be the predictor

of y2. Now
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β̂ =








X1

X2




′


X1

X2








−1


X1

X2




′


y1

ŷ2




= [X ′
1X1 +X ′

2X2]
−1 [X ′

1y1 +X ′
2ŷ2]

Recall that the OLS fonc are

X ′X β̂ = X ′y

so if we regressed using only the first (complete) observations, we would have

X ′
1X1β̂1 = X ′

1y1.

Likewise, and OLS regression using only the second (filled in) observations would

give

X ′
2X2β̂2 = X ′

2ŷ2.

Substituting these into the equation for the overall combined estimator gives

β̂ = [X ′
1X1 +X ′

2X2]
−1
[
X ′

1X1β̂1 +X ′
2X2β̂2

]

= [X ′
1X1 +X ′

2X2]
−1 X ′

1X1β̂1 +[X ′
1X1 +X ′

2X2]
−1 X ′

2X2β̂2

≡ Aβ̂1 +(IK −A)β̂2

where

A ≡
[
X ′

1X1 +X ′
2X2
]−1

X ′
1X1
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and we use

[
X ′

1X1 +X ′
2X2
]−1

X ′
2X2 = [X ′

1X1 +X ′
2X2]

−1 [(X ′
1X1 +X ′

2X2)−X ′
1X1]

= IK − [X ′
1X1 +X ′

2X2]
−1 X ′

1X1

= IK −A.

Now,

E(β̂) = Aβ+(IK −A)E
(

β̂2

)

and this will be unbiased only if E
(

β̂2

)
= β.

• The conclusion is the this filled in observations alone would need to define an

unbiased estimator. This will be the case only if

ŷ2 = X2β+ ε̂2

where ε̂2 has mean zero. Clearly, it is difficult to satisfy this condition without

knowledge of β.

• Note that putting ŷ2 = ȳ1 does not satisfy the condition and therefore leads to a

biased estimator.

Exercise 15 Formally prove this last statement.

• One possibility that has been suggested (see Greene, page 275) is to estimate β

using a first round estimation using only the complete observations

β̂1 = (X ′
1X1)

−1X ′
1y1
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then use this estimate, β̂1,to predict y2 :

ŷ2 = X2β̂1

= X2(X ′
1X1)

−1X ′
1y1

Now, the overall estimate is a weighted average of β̂1 and β̂2, just as above, but

we have

β̂2 = (X ′
2X2)

−1X ′
2ŷ2

= (X ′
2X2)

−1X ′
2X2β̂1

= β̂1

This shows that this suggestion is completely empty of content: the final estima-

tor is the same as the OLS estimator using only the complete observations.

9.3.2 The sample selection problem

In the above discussion we assumed that the missing observations are random. The

sample selection problem is a case where the missing observations are not random.

Consider the model

y∗t = x′tβ+ εt

which is assumed to satisfy the classical assumptions. However, y∗t is not always

observed. What is observed is yt defined as

yt = y∗t ify∗t ≥ 0

Or, in other words, y∗t is missing when it is less than zero.
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The difference in this case is that the missing values are not random: they are

correlated with the xt . Consider the case

y∗ = x+ ε

with V (ε) = 25. The figure sampsel.ps (on web site) illustrates this.

9.3.3 Missing observations on the regressors

Again the model is 


y1

y2


=




X1

X2


β+




ε1

ε2




but we assume now that each row of X2 has an unobserved component(s). Again,

one could just estimate using the complete observations, but it may seem frustrating

to have to drop observations simply because of a single missing variable. In general,

if the unobserved X2 is replaced by some prediction, X ∗
2 , then we are in the case of

errors of observation. As before, this means that the OLS estimator is biased when

X∗
2 is used instead of X2. Consistency is salvaged, however, as long as the number of

missing observations doesn’t increase with n.

• Including observations that have missing values replaced by ad hoc values can

be interpreted as introducing false stochastic restrictions. In general, this in-

troduces bias. It is difficult to determine whether MSE increases or decreases.

Monte Carlo studies suggest that it is dangerous to simply substitute the mean,

for example.

• In the case that there is only one regressor other that the constant, subtitution of

x̄ for the missing xt does not lead to bias. This is a special case that doesn’t hold

for K > 2.
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Exercise 16 Prove this last statement.

• In summary, if one is strongly concerned with bias, it is best to drop observations

that have missing components. There is potential for reduction of MSE through

filling in missing elements with intelligent guesses, but this could also increase

MSE.
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10 Functional form and nonnested tests

Though theory often suggests which conditioning variables should be included, and

suggests the signs of certain derivatives, it is usually silent regarding the functional

form of the relationship between the dependent variable and the regressors. For exam-

ple, considering a cost function, one could have a Cobb-Douglas model

c = Awβ1
1 wβ2

2 qβqeε

This model, after taking logarithms, gives

lnc = β0 +β1 lnw1 +β2 lnw2 +βq lnq+ ε

where β0 = lnA. Theory suggests that A > 0,β1 > 0,β2 > 0,β3 > 0. This model isn’t

compatible with a fixed cost of production since c = 0 when q = 0. Homogeneity of

degree one in input prices suggests that β1 + β2 = 1, while constant returns to scale

implies βq = 1.

While this model may be reasonable in some cases, an alternative

√
c = β0 +β1

√
w1 +β2

√
w2 +βq

√
q+ ε

may be just as plausible. Note that
√

x and ln(x) look quite alike, for certain values of

the regressors, and up to a linear transform, so it may be difficult to choose between

these models.

The basic point is that many functional forms are compatible with the linear-in-

parameters model, since this model can incorporate a wide variety of nonlinear trans-

formations of the dependent variable and the regressors. For example, suppose that
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g(·) is a real valued function and that x(·) is a K− vector-valued function. The follow-

ing model is linear in the parameters but nonlinear in the variables:

xt = x(zt)

yt = x′tβ+ εt

There may be P fundamental conditioning variables zt , but there may be K regressors,

where K may be smaller than, equal to or larger than P. For example, xt could include

squares and cross products of the conditioning variables in zt .

10.1 Flexible functional forms

Given that the functional form of the relationship between the dependent variable and

the regressors is in general unknown, one might wonder if there exist parametric mod-

els that can closely approximate a wide variety of functional relationships. A “Diewert-

Flexible” functional form is defined as one such that the function, the vector of first

derivatives and the matrix of second derivatives can take on an arbitrary value at a

single data point. Flexibility in this sense clearly requires that there be at least

K = 1+P+
(
P2 −P

)
/2+P

free parameters: one for each independent effect that we wish to model.

Suppose that the model is

y = g(x)+ ε

A second-order Taylor’s series expansion (with remainder term) of the function g(x)
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about the point x = 0 is

g(x) = g(0)+ x′Dxg(0)+
x′D2

xg(0)x
2

+R

Use the approximation, which simply drops the remainder term, as an approximation

to g(x) :

g(x) ' gK(x) = g(0)+ x′Dxg(0)+
x′D2

xg(0)x
2

As x → 0, the approximation becomes more and more exact, in the sense that gK(x)→

g(x), DxgK(x) → Dxg(x) and D2
xgK(x) → D2

xg(x). For x = 0, the approximation is

exact, up to the second order. The idea behind many flexible functional forms is to

note that g(0), Dxg(0) and D2
xg(0) are all constants. If we treat them as parameters, the

approximation will have exactly enough free parameters to approximate the function

g(x), which is of unknown form, exactly, up to second order, at the point x = 0. The

model is

gK(x) = α+ x′β+1/2x′Γx

so the regression model to fit is

y = α+ x′β+1/2x′Γx+ ε

• While the regression model has enough free parameters to be Diewert-flexible,

the question remains: is plimα̂ = g(0)? Is plimβ̂ = Dxg(0)? Is plimΓ̂ = D2
xg(0)?

• The answer is no, in general. The reason is that if we treat the true values of the

parameters as these derivatives, then ε is forced to play the part of the remainder

term, which is a function of x, so that x and ε are correlated in this case. As

before, the estimator is biased in this case.
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• A simpler example would be to consider a first-order T.S. approximation to a

quadratic function. Draw picture.

• The conclusion is that “flexible functional forms” aren’t really flexible in a use-

ful statistical sense, in that neither the function itself nor its derivatives are con-

sistently estimated, unless the function belongs to the parametric family of the

specified functional form. In order to lead to consistent inferences, the regres-

sion model must be correctly specified.

10.1.1 The translog form

In spite of the fact that FFF’s aren’t really as flexible as they were originally claimed

to be, they are useful, and they are certainly subject to less bias due to misspecification

of the functional form than are many popular forms, such as the Cobb-Douglas of

the simple linear in the variables model. The translog model is probably the most

widely used FFF. This model is as above, except that the variables are subjected to a

logarithmic tranformation. Also, the expansion point is usually taken to be the sample

mean of the data, after the logarithmic transformation. The model is defined by

y = ln(c)

x = ln( z
z̄)

= ln(z)− ln( z̄)

y = α+ x′β+1/2x′Γx+ ε
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In this presentation, the t subscript that distinguishes observations is suppressed for

simplicity. Note that

∂y
∂x

= β+Γx

= ∂ ln(c)
∂ ln(z) (theotherpartofx isconstant)

= ∂c
∂z

z
c

which is the elasticity of w with respect to z. This is a convenient feature of the translog

model. Note that at the means of the conditioning variables, z̄, x = 0, so

∂y
∂x

∣∣∣∣
z=z̄

= β

so the β are the first-order elasticities, at the means of the data.

To illustrate, consider that y is cost of production:

y = c(w,q)

where w is a vector of input prices and q is output. We could add other variables by

extending q in the obvious manner, but this is supressed for simplicity. By Shephard’s

lemma, the conditional factor demands are

x =
∂c(w,q)

∂w

and the cost shares of the factors are therefore

s =
wx
c

=
∂c(w,q)

∂w
w
c
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which is simply the vector of elasticities of cost with respect to input prices. If the cost

function is modeled using a translog function, we have

ln(c) = α+ x′β+ z′δ+1/2

[
x′ z

]



Γ11 Γ12

Γ′
12 Γ22







x

z




= α+ x′β+ z′δ+1/2x′Γ11x+ x′Γ12z+1/2z2γ22

where x = ln(w/ w̄) and z = ln(q/ q̄), and

Γ11 =




γ11 γ12

γ12 γ22




Γ12 =




γ13

γ23




Γ22 = γ33.

Note that symmetry of the second derivatives has been imposed.

Then the share equations are just

s = β+

[
Γ11 Γ12

]



x

z




Therefore, the share equations and the cost equation have parameters in common. By

pooling the equations together and imposing the (true) restriction that the parameters

of the equations be the same, we can gain efficiency.

To illustrate in more detail, consider the case of two inputs, so

x =




x1

x2


 .
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In this case the translog model of the logarithmic cost function is

lnc = α+β1x1 +β2x2 +δz+
γ11

2
x2

1 +
γ22

2
x2

2 +
γ33

2
z2 + γ12x1x2 + γ13x1z+ γ23x2z

The two cost shares of the inputs are the derivatives of lnc with respect to x1 and x2:

s1 = β1 + γ11x1 + γ12x2 + γ13z

s2 = β2 + γ12x1 + γ22x2 + γ13z

Note that the share equations and the cost equation have parameters in common.

One can do a pooled estimation of the three equations at once, imposing that the pa-

rameters are the same. In this way we’re using more observations and therefore more

information, which will lead to imporved efficiency. Note that this does assume that

the cost equation is correctly specified (i.e., not an approximation), since otherwise the

derivatives would not be the true derivatives of the log cost function, and would then

be misspecified for the shares. To pool the equations, write the model in matrix form
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(adding in error terms)




lnc

s1

s2




=




1 x1 x2 z x2
1
2

x2
2
2

z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0

0 0 1 0 0 x2 0 x1 0 z







α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23




+




ε1

ε2

ε3




This is one observation on the three equations. With the appropriate notation, a

single observation can be written as

yt = Xtθ+ εt

The overall model would stack n observations on the three equations for a total of 3n

observations: 


y1

y2

...

yn




=




X1

X2

...

Xn




θ+




ε1

ε2

...

εn




Next we need to consider the errors. For observation t the errors can be placed in a
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vector

εt =




ε1t

ε2t

ε3t




First consider the covariance matrix of this vector: the shares are certainly corre-

lated since they must sum to one. (In fact, with 2 shares the variances are equal and

the covariance is -1 times the variance. General notation is used to allow easy exten-

sion to the case of more than 2 inputs). Also, it’s likely that the shares and the cost

equation have different variances. Supposing that the model is covariance stationary,

the variance of εt won′t depend upon t:

Varεt = Σ0 =




σ11 σ12 σ13

· σ22 σ23

· · σ33




Note that this matrix is singular, since the shares sum to 1. Assuming that there is no

autocorrelation, the overall covariance matrix has the seemingly unrelated regressions

(SUR) structure.

Var




ε1

ε2

...

εn




= Σ =




Σ0 0 · · · 0

0 Σ0
. . .

...
...

. . . 0

0 · · · 0 Σ0




= In ⊗Σ0

where the symbol ⊗ indicates the Kronecker product. The Kronecker product of two
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matrices A and B is

A⊗B =




a11B a12B · · · a1qB

a21B
. . .

...
...

apqB · · · apqB




.

Personally, I can never keep straight the roles of A and B.

10.1.2 FGLS estimation of a translog model

So, this model has heteroscedasticity and autocorrelation, so OLS won’t be efficient.

The next question is: how do we estimate efficiently using FGLS? FGLS is based upon

inverting the estimated error covariance Σ̂. So we need to estimate Σ.

An asymptotically efficient procedure is (supposing normality of the errors)

1. Estimate each equation by OLS

2. Estimate Σ0 using

Σ̂0 =
1
n

n

∑
t=1

ε̂t ε̂′t

3. Next we need to account for the singularity of Σ0. It can be shown that Σ̂0 will

be singular when the shares sum to one, so FGLS won’t work. The solution is to
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drop one of the share equations, for example the second. The model becomes




lnc

s1


=




1 x1 x2 z
x2

1
2

x2
2
2

z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0







α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23




+




ε1

ε2




or in matrix notation for the observation:

y∗t = X∗
t θ+ ε∗t

and in stacked notation for all observations we have the 2n observations:




y∗1

y∗2
...

y∗n




=




X∗
1

X∗
2

...

X∗
n




θ+




ε∗1

ε∗2
...

ε∗n




or, finally in matrix notation for all observations:

y∗ = X∗θ+ ε∗
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Considering the error covariance, we can define

Σ∗
0 = Var




ε1

ε2




Σ∗ = In ⊗Σ∗
0

Define Σ̂∗
0 as the leading 2×2 block of Σ̂0 , and form

Σ̂∗ = In ⊗ Σ̂∗
0.

This is a consistent estimator, following the consistency of OLS and applying a

LLN.

4. Next compute the Cholesky factorization

P̂0 = Chol
(
Σ̂∗

0

)−1

and the Cholesky factorization of the overall covariance matrix of the 2 equation

model, which can be calculated as

P̂ = CholΣ̂∗ = In ⊗ P̂0

5. Finally the FGLS estimator can be calculated by applying OLS to the trans-

formed model

P̂y∗ = P̂X∗θ+ P̂ε∗

or by directly using the GLS formula

θ̂FGLS =
(

X∗′ (Σ̂∗
0

)−1
X∗
)−1

X∗′ (Σ̂∗
0

)−1
y∗

140



It is equivalent to transform each observation individually:

P̂0y∗y = P̂0X∗
t θ+ P̂ε∗

and then apply OLS. This is probably the simplest approach.

A few last comments.

1. We have assumed no autocorrelation across time. This is clearly restrictive. It is

relatively simple to relax this, but we won’t go into it here.

2. Also, we have only imposed symmetry of the second derivatives. Another re-

striction that the model should satisfy is that the estimated shares should sum to

1. This can be accomplished by imposing

β1 +β2 = 1
3

∑
i=1

γi j = 0, j = 1,2,3.

These are linear parameter restrictions, so they are easy to impose and will im-

prove efficiency if they are true.

3. The estimation procedure outlined above can be iterated. That is, estimate θ̂FGLS

as above, then re-estimate Σ∗
0 using errors calculated as

ε̂ = y−X θ̂FGLS

These might be expected to lead to a better estimate than the estimator based on

θ̂OLS, since FGLS is asymptotically more efficient. Then re-estimate θ using the

new estimated error covariance. It can be shown that if this is repeated until the
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estimates don’t change (i.e., iterated to convergence) then the resulting estimator

is the MLE. At any rate, the asymptotic properties of the iterated and uniterated

estimators are the same, since both are based upon a consistent estimator of the

error covariance.

10.2 Testing nonnested hypotheses

Given that the choice of functional form isn’t perfectly clear, in that many possibilities

exist, how can one choose between forms? When one form is a parametric restriction

of another, the previously studied tests such as Wald, LR, score or qF are all possibili-

ties. For example, the Cobb-Douglas model is a parametric restriction of the translog:

The translog is

yt = α+ x′tβ+1/2x′tΓxt + ε

where the variables are in logarithms, while the Cobb-Douglas is

yt = α+ x′tβ+ ε

so a test of the Cobb-Douglas versus the translog is simply a test that Γ = 0.

The situation is more complicated when we want to test non-nested hypotheses. If

the two functional forms are linear in the parameters, and use the same transformation

of the dependent variable, then they may be written as

M1 : y = Xβ+ ε

εt ∼ iid(0,σ2
ε)

M2 : y = Zγ+η

η ∼ iid(0,σ2
η)
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We wish to test hypotheses of the form: H0 : Mi is correctly specified versus HA : Mi is

misspecified, for i = 1,2.

• One could account for non-iid errors, but we’ll suppress this for simplicity.

• There are a number of ways to proceed. We’ll consider the J test, proposed by

Davidson and MacKinnon, Econometrica (1981). The idea is to artificially nest

the two models, e.g.,

y = (1−α)Xβ+α(Zγ)+ω

If the first model is correctly specified, then the true value of α is zero. On the

other hand, if the second model is correctly specified then α = 1.

– The problem is that this model is not identified in general. For example, if

the models share some regressors, as in

M1 : yt = β1 +β2x2t +β3x3t + εt

M2 : yt = γ1 + γ2x2t + γ3x4t +ηt

then the composite model is

yt = (1−α)β1 +(1−α)β2x2t +(1−α)β3x3t +αγ1 +αγ2x2t +αγ3x4t +ωt

Combining terms we get

yt = ((1−α)β1 +αγ1)+((1−α)β2 +αγ2)x2t +(1−α)β3x3t +αγ3x4t +ωt

= δ1 +δ2x2t +δ3x3t +δ4x4t +ωt
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The four δ′s are consistently estimable, but α is not, since we have four equations in 7

unknowns, so one can’t test the hypothesis that α = 0.

The idea of the J test is to substitute γ̂ in place of γ. This is a consistent estimator

supposing that the second model is correctly specified. It will tend to a finite probabil-

ity limit even if the second model is misspecified. Then estimate the model

y = (1−α)Xβ+α(Zγ̂)+ω

= Xθ+αŷ+ω

where ŷ = Z(Z′Z)−1Z′y = PZy. In this model, α is consistently estimable, and one

can show that, under the hypothesis that the first model is correct, α p→ 0 and that the

ordinary t -statistic for α = 0 is asymptotically normal:

t =
α̂

σ̂α̂

a∼ N(0,1)

• If the second model is correctly specified, then t
p→ ∞, since α̂ tends in proba-

bility to 1, while it’s estimated standard error tends to zero. Thus the test will

always reject the false null model, asymptotically, since the statistic will eventu-

ally exceed any critical value with probability one.

• We can reverse the roles of the models, testing the second against the first.

• It may be the case that neither model is correctly specified. In this case, the test

will still reject the null hypothesis, asymptotically, if we use critical values from

the N(0,1) distribution, since as long as α̂ tends to something different from

zero, |t| p→ ∞. Of course, when we switch the roles of the models the other will

also be rejected asymptotically.
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• In summary, there are 4 possible outcomes when we test two models, each

against the other. Both may be rejected, neither may be rejected, or one of the

two may be rejected.

• There are other tests available for non-nested models. The J− test is simple to

apply when both models are linear in the parameters. The P-test is similar, but

easier to apply when M1 is nonlinear.

• The above presentation assumes that the same transformation of the dependent

variable is used by both models. MacKinnon, White and Davidson, Journal of

Econometrics, (1983) shows how to deal with the case of different transforma-

tions.

• Monte-Carlo evidence shows that these tests often over-reject a correctly speci-

fied model. Can use bootstrap critical values to get better-performing tests.
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11 Exogeneity and simultaneity

Several times we’ve encountered cases where correlation between regressors and the

error term lead to biasedness and inconsistency of the OLS estimator. Cases include

autocorrelation with lagged dependent variables and measurement error in the regres-

sors. Another important case is that of simultaneous equations. The cause is different,

but the effect is the same.

11.1 Simultaneous equations

Up until now our model is

y = Xβ+ ε

where, for purposes of estimation we can treat X as fixed. This means that when esti-

mating β we condition on X . When analyzing dynamic models, we’re not interested in

conditioning on X , as we saw in the section on stochastic regressors. Nevertheless, the

OLS estimator obtained by treating X as fixed continues to have desirable asymptotic

properties even in that case.

Simultaneous equations is a different prospect. An example of a simultaneous

equation system is a simple supply-demand system:

Demand: qt = α1 +α2 pt +α3yt + ε1t

Supply: qt = β1 +β2 pt + ε2t

E







ε1t

ε2t



[

ε1t ε2t

]

 =




σ11 σ12

· σ22




≡ Σ,∀t

The presumption is that qt and pt are jointly determined at the same time by the in-
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tersection of these equations. We’ll assume that yt is determined by some unrelated

process. It’s easy to see that we have correlation between regressors and errors. Solv-

ing for pt :

α1 +α2 pt +α3yt + ε1t = β1 +β2 pt + ε2t

β2 pt −α2 pt = α1 −β1 +α3yt + ε1t − ε2t

pt =
α1 −β1

β2 −α2
+

α3yt

β2 −α2
+

ε1t − ε2t

β2 −α2

Now consider whether pt is uncorrelated with ε1t :

E(ptε1t) = E
{(

α1 −β1

β2 −α2
+

α3yt

β2 −α2
+

ε1t − ε2t

β2 −α2

)
ε1t

}

=
σ11 −σ12

β2 −α2

Because of this correlation, OLS estimation of the demand equation will be biased and

inconsistent. The same applies to the supply equation, for the same reason.

In this model, qt and pt are the endogenous varibles (endogs), that are determined

within the system. yt is an exogenous variable (exogs). These concepts are a bit tricky,

and we’ll return to it in a minute. First, some notation. Suppose we group together

current endogs in the vector Yt . If there are G endogs, Yt is G× 1. Group current and

lagged exogs, as well as lagged endogs in the vector Xt , which is K×1. Stack the errors

of the G equations into the error vector Et . The model, with additional assumtions, can

be written as

Y ′
t Γ = X ′

t B+E ′
t

Et ∼ N(0,Σ),∀t

E(EtE
′
s) = 0, t 6= s
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We can stack all n observations and write the model as

Y Γ = XB+E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)

where

Y =




Y ′
1

Y ′
2

...

Y ′
n




,X =




X ′
1

X ′
2

...

X ′
n




,E =




E ′
1

E ′
2

...

E ′
n




Y is n×G, X is n×K, and E is n×G.

• This system is complete, in that there are as many equations as endogs.

• There is a normality assumption. This isn’t necessary, but allows us to consider

the relationship between least squares and ML estimators.

• Since there is no autocorrelation of the Et ’s, and since the columns of E are

individually homoscedastic, then

Ψ =




σ11In σ12In · · · σ1GIn

σ22In
...

. . .
...

· σGGIn




= In ⊗Σ

• X may contain lagged endogenous and exogenous variables. These variables are

predetermined.
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• We need to define what is meant by “endogenous” and “exogenous” when clas-

sifying the current period variables.

11.2 Exogeneity

The model defines a data generating process. The model involves two sets of variables,

Yt and Xt , as well as a parameter vector

θ =

[
vec(Γ)′ vec(B)′ vec∗(Σ)′

]′

• In general, without additional restrictions, θ is a G2 +GK +
(
G2 −G

)
/2+G di-

mensional vector. This is the parameter vector that were interested in estimating.

• In principle, there exists a joint density function for Yt and Xt, which depends on

a parameter vector φ. Write this density as

ft(Yt ,Xt |φ,It)

where It is the information set in period t. This includes lagged Y ′
t s and lagged

Xt ’s of course. This can be factored into the density of Yt conditional on Xt times

the marginal density of Xt :

ft(Yt ,Xt |φ,It) = ft(Yt |Xt,φ,It) ft(Xt|φ,It)

This is a general factorization, but is may very well be the case that not all

parameters in φ affect both factors. So use φ1 to indicate elements of φ that

enter into the conditional density and write φ2 for parameters that enter into the
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marginal. In general, φ1 and φ2 may share elements, of course. We have

ft(Yt ,Xt|φ,It) = ft(Yt |Xt,φ1,It) ft(Xt|φ2,It)

• Recall that the model is

Y ′
t Γ = X ′

t B+E ′
t

Et ∼ N(0,Σ),∀t

E(EtE
′
s) = 0, t 6= s

Normality and lack of correlation over time imply that the observations are indepen-

dent of one another, so we can write the log-likelihood function as the sum of likeli-

hood contributions of each observation:

lnL(Y |θ,It) =
n

∑
t=1

ln ft(Yt ,Xt|φ,It)

=
n

∑
t=1

ln( ft(Yt |Xt,φ1,It) ft(Xt|φ2,It))

=
n

∑
t=1

ln ft(Yt |Xt,φ1,It)+
n

∑
t=1

ln ft(Xt|φ2,It) =

Definition 17 (Weak Exogeneity) Xt is weakly exogeneous for θ (the original param-

eter vector) if there is a mapping from φ to θ that is invariant to φ2. More formally, for

an arbitrary (φ1,φ2), θ(φ) = θ(φ1).

This implies that φ1 and φ2 cannot share elements if Xt is weakly exogenous, since

φ1 would change as φ2 changes, which prevents consideration of arbitrary combina-

tions of (φ1,φ2).
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Supposing that Xt is weakly exogenous, then the MLE of φ1 using the joint density

is the same as the MLE using only the conditional density

lnL(Y |X ,θ,It) =
n

∑
t=1

ln ft(Yt |Xt,φ1,It)

since the conditional likelihood doesn’t depend on φ2. In other words, the joint and

conditional log-likelihoods maximize at the same value of φ1.

• With weak exogeneity, knowledge of the DGP of Xt is irrelevant for inference

on φ1, and knowledge of φ1 is sufficient to recover the parameter of interest, θ.

Since the DGP of Xt is irrelevant, we can treat Xt as fixed in inference.

• By the invariance property of MLE, the MLE of θ is θ(φ̂1),and this mapping is

assumed to exist in the definition of weak exogeneity.

• Of course, we’ll need to figure out just what this mapping is to recover θ̂ from

φ̂1. This is the famous identification problem.

• With lack of weak exogeneity, the joint and conditional likelihood functions

maximize in different places. For this reason, we can’t treat Xt as fixed in infer-

ence. The joint MLE is valid, but the conditional MLE is not.

• In resume, we require the variables in Xt to be weakly exogenous if we are to be

able to treat them as fixed in estimation. Lagged Yt satisfy the definition, since

they are in the conditioning information set, e.g., Yt−1 ∈ It . Lagged Yt aren’t

exogenous in the normal usage of the word, since their values are determined

within the model, just earlier on. Weakly exogenous variables include exogenous

(in the normal sense) variables as well as all predetermined variables.
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11.3 Reduced form

Recall that the model is

Y ′
t Γ = X ′

t B+E ′
t

V (Et) = Σ

This is the model in structural form.

Definition 18 (Structural form) An equation is in structural form when more than

one current period endogenous variable is included.

The solution for the current period endogs is easy to find. It is

Y ′
t = X ′

t BΓ−1 +E ′
t Γ

−1

= X ′
t Π+V ′

t =

Now only one current period endog appears in each equation. This is the reduced form.

Definition 19 (Reduced form) An equation is in reduced form if only one current pe-

riod endog is included.

An example is our supply/demand system. The reduced form for quantity is ob-

tained by solving the supply equation for price and substituting into demand:
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qt = α1 +α2

(
qt −β1 − ε2t

β2

)
+α3yt + ε1t

β2qt −α2qt = β2α1 −α2 (β1 + ε2t)+β2α3yt +β2ε1t

qt =
β2α1 −α2β1

β2 −α2
+

β2α3yt

β2 −α2
+

β2ε1t −α2ε2t

β2 −α2

= π11 +π21yt +V1t

Similarly, the rf for price is

β1 +β2 pt + ε2t = α1 +α2 pt +α3yt + ε1t

β2 pt −α2 pt = α1 −β1 +α3yt + ε1t − ε2t

pt =
α1 −β1

β2 −α2
+

α3yt

β2 −α2
+

ε1t − ε2t

β2 −α2

= π12 +π22yt +V2t

The interesting thing about the rf is that the equations individually satisfy the classical

assumptions, since yt is uncorrelated with ε1t and ε2t by assumption, and therefore

E(ytVit) = 0, i=1,2, ∀t. The errors of the rf are




V1t

V2t


=




β2ε1t−α2ε2t
β2−α2

ε1t−ε2t
β2−α2




The variance of V1t is

V (V1t) = E
[(

β2ε1t −α2ε2t

β2 −α2

)(
β2ε1t −α2ε2t

β2 −α2

)]

=
β2

2σ11 −2β2α2σ12 +α2σ22

(β2 −α2)
2
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• This is constant over time, so the first rf equation is homoscedastic.

• Likewise, since the εt are independent over time, so are the Vt .

The variance of the second rf error is

V (V2t) = E
[(

ε1t − ε2t

β2 −α2

)(
ε1t − ε2t

β2 −α2

)]

=
σ11 −2σ12 +σ22

(β2 −α2)
2

and the contemporaneous covariance of the errors across equations is

E(V1tV2t) = E
[(

β2ε1t −α2ε2t

β2 −α2

)(
ε1t − ε2t

β2 −α2

)]

=
β2σ11 − (β2 +α2)σ12 +σ22

(β2 −α2)
2

• In summary the rf equations individually satisfy the classical assumptions, under

the assumtions we’ve made, but they are contemporaneously correlated.

The general form of the rf is

Y ′
t = X ′

t BΓ−1 +E ′
t Γ

−1

= X ′
t Π+V ′

t

so we have that

Vt =
(
Γ−1)′Et ∼ N

(
0,
(
Γ−1)′ΣΓ−1

)
,∀t

and that the Vt are timewise independent (note that this wouldn’t be the case if the Et

were autocorrelated).
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11.4 IV estimation

The simultaneous equations model is

Y Γ = XB+E

Considering the first equation (this is without loss of generality, since we can always

reorder the equations) we can partition the Y matrix as

Y =

[
y Y1 Y2

]

• y is the first column

• Y1 are the other endogenous variables that enter the first equation

• Y2 are endogs that are excluded from this equation

Similarly, partition X as

X =

[
X1 X2

]

• X1 are the included exogs, and X2 are the excluded exogs.

Finally, partition the error matrix as

E =

[
ε E12

]

Assume that Γ has ones on the main diagonal. These are normalization restrictions

that simply scale the remaining coefficients on each equation, and which scale the

variances of the error terms.
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Given this scaling and our partitioning, the coefficient matrices can be written as

Γ =




1 Γ12

−γ1 Γ22

0 Γ32




B =




β1 B12

0 B22




With this, the first equation can be written as

y = Y1γ1 +X1β1 + ε

= Zδ+ ε

The problem, as we’ve seen is that Z is correlated with ε, since Y1 is formed of endogs.

Let’s change notation to our standard linear model, but with correlation between

regressors and ther error term:

y = Xβ+ ε

ε ∼ iid(0,σ2)

E(X ′ε) 6= 0.

Consider some matrix W which is formed of variables uncorrelated with ε. This matrix

defines a projection matrix

PW = W (W ′W )−1W ′

so that anything that is projected onto the space spanned by W will be uncorrelated

with ε, by the definition of W. Transforming the model with this projection matrix we
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get

PW y = PW X +PW ε

or

y∗ = X∗β+ ε∗

Now we have that ε∗ and X∗ are uncorrelated, since this is simply

E(X∗′ε∗) = E(X ′P′
W PW ε)

= E(X ′PW ε)

and

PW X = W (W ′W )−1W ′X

is the fitted value from a regression of X on W. This is a linear combination of the

columns of W, so it must be uncorrelated with ε. This implies that applying OLS to the

model

y∗ = X∗β+ ε∗

will lead to a consistent estimator, given a few more assumptions. This is the general-

ized instrumental variables estimator. W is known as the matrix of instruments. The

estimator is

β̂IV = (X ′PW X)−1X ′PW y

from which we obtain

β̂IV = (X ′PW X)−1X ′PW (Xβ+ ε)

= β+(X ′PW X)−1X ′PW ε
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so

β̂IV −β = (X ′PW X)−1X ′PW ε

=
(
X ′W (W ′W )−1W ′X

)−1
X ′W (W ′W )−1W ′ε

Now we can introduce factors of n to get

β̂IV −β =

((
X ′W

n

)(
W ′W

n

−1
)(

W ′X
n

))−1(
X ′W

n

)(
W ′W

n

)−1(W ′ε
n

)

Assuming that each of the terms with a n in the denominator satisfies a LLN, so that

• W ′W
n

p→ QWW , a finite pd matrix

• X ′W
n

p→ QXW , a finite matrix with rank K (= cols(X) )

• W ′ε
n

p→ 0

then the plim of the rhs is zero. This last term has plim 0 since we assume that W and

ε are uncorrelated, e.g.,

E(W ′
t ε) = 0,

Given these assumtions the IV estimator is consistent

β̂IV
p→ β.

Furthermore, scaling by
√

n, we have

√
n
(

β̂IV −β
)

=

((
X ′W

n

)(
W ′W

n

)−1(W ′X
n

))−1(
X ′W

n

)(
W ′W

n

)−1(W ′ε√
n

)

Assuming that the far right term satifies a CLT, so that
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• W ′ε√
n

d→ N(0,QWW σ2)

then we get
√

n
(

β̂IV −β
)

d→ N
(

0,(QXW Q−1
WW Q′

XW )−1σ2
)

The estimators for QXW and QWW are the obvious ones. An estimator for σ2 is

σ̂2
IV =

1
n

(
y−X β̂IV

)′(
y−X β̂IV

)
.

This estimator is consistent following the proof of consistency of the OLS estimator of

σ2, when the classical assumptions hold.

The formula used to estimate the variance of β̂IV is

V̂ (β̂IV ) =
((

X ′W
)(

W ′W
)−1 (

W ′X
))−1

σ̂2
IV

The IV estimator is

1. Consistent

2. Asymptotically normally distributed

3. Biased in general, since even though E(X ′PW ε) = 0, E(X ′PW X)−1X ′PW ε may

not be zero, since (X ′PW X)−1 and X ′PW ε are not independent.

An important point is that the asymptotic distribution of β̂IV depends upon QXW and

QWW , and these depend upon the choice of W. The choice of instruments influences

the efficiency of the estimator.

• When we have two sets of instruments, W1 and W2 such that W1 ⊂W2, then the IV

estimator using W2 is at least as efficiently asymptotically as the estimator that
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used W1. More instruments leads to more asymptotically efficient estimation, in

general.

• There are special cases where there is no gain (simultaneous equations is an

example of this, as we’ll see).

• The penalty for indiscriminant use of instruments is that the small sample bias of

the IV estimator rises as the number of instruments increases. The reason for this

is that PW X becomes closer and closer to X itself as the number of instruments

increases.

• IV estimation can clearly be used in the case of simultaneous equations. The

only issue is which instruments to use.

11.5 Identification by exclusion restrictions

The identification problem in simultaneous equations is in fact of the same nature as the

identification problem in any estimation setting: does the limiting objective function

have the proper curvature so that there is a unique global minimum or maximum at the

true parameter value? In the context of IV estimation, this is the case if the limiting

covariance of the IV estimator is positive definite and plim 1
nW ′ε = 0. This matrix is

V∞(β̂IV ) = (QXW Q−1
WW Q′

XW )−1σ2

• The necessary and sufficient condition for identification is simply that this matrix

be positive definite, and that the instruments be (asymptotically) uncorrelated

with ε.

• For this matrix to be positive definite, we need that the conditions noted above

hold: QWW must be positive definite and QXW must be of full rank ( K ).
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• These identification conditions are not that intuitive nor is it very obvious how

to check them.

11.5.1 Necessary conditions

If we use IV estimation for a single equation of the system, the equation can be written

as

y = Zδ+ ε

where

Z =

[
Y1 X1

]

Notation:

• Let K be the total numer of weakly exogenous variables.

• Let K∗ = cols(X1) be the number of included exogs, and let K∗∗ = K −K∗ be

the number of excluded exogs (in this equation).

• Let G∗ = cols(Y1) + 1 be the total number of included endogs, and let G∗∗ =

G−G∗ be the number of exxluded endogs.

Using this notation, consider the selection of instruments.

• Now the X1 are weakly exogenous and can serve as their own instruments.

• It turns out that X exhausts the set of possible instruments, in that if the variables

in X don’t lead to an identified model then no other instruments will identify the

model either. Assuming this is true (we’ll prove it in a moment), then a necessary

condition for identification is that cols(X2) ≥ cols(Y1) since if not then at least

one instrument must be used twice, so W will not have full column rank:

ρ(W) < K∗ +G∗−1 ⇒ ρ(QZW ) < K∗ +G∗−1
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This is the order condition for identification in a set of simultaneous equations.

When the only identifying information is exclusion restrictions on the variables

that enter an equation, then the number of excluded exogs must be greater than

or equal to the number of included endogs, minus 1 (the normalized lhs endog),

e.g.,

K∗∗ ≥ G∗−1

• To show that this is in fact a necessary condition consider some arbitrary set of

instruments W. A necessary condition for identification is that

ρ
(

plim
1
n

W ′Z
)

= K∗ +G∗−1

where

Z =

[
Y1 X1

]

Recall that we’ve partitioned the model

Y Γ = XB+E

as

Y =

[
y Y1 Y2

]

X =

[
X1 X2

]

Given the reduced form

Y = XΠ+V
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we can write the reduced form using the same partition

[
y Y1 Y2

]
=

[
X1 X2

]



π11 Π12 Π13

π21 Π22 Π23


+ v V1 V2

so we have

Y1 = X1Π12 +X2Π22 +V1

so
1
n

W ′Z =
1
n

W ′
[

X1Π12 +X2Π22 +V1 X1

]

Because the W ’s are uncorrelated with the V1 ’s, by assumption, the cross between W

and V1 converges in probability to zero, so

plim
1
n

W ′Z = plim
1
n

W ′
[

X1Π12 +X2Π22 X1

]

Since the far rhs term is formed only of linear combinations of columns of X , the rank

of this matrix can never be greater than K, regardless of the choice of instruments. If

Z has more than K columns, then it is not of full column rank. When Z has more than

K columns we have

G∗−1+K∗ > K

or noting that K∗∗ = K −K∗,

G∗−1 > K∗∗

In this case, the limiting matrix is not of full column rank, and the identification con-

dition fails.
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11.5.2 Sufficient conditions

Identification essentially requires that the structural parameters be recoverable from

the data. This won’t be the case, in general, unless the structural model is subject to

some restrictions. We’ve already identified necessary conditions. Turning to sufficient

conditions (again, we’re only considering identification through zero restricitions on

the parameters, for the moment).

The model is

Y ′
t Γ = X ′

t B+Et

V (Et) = Σ

This leads to the reduced form

Y ′
t = X ′

t BΓ−1 +EtΓ−1

= X ′
t Π+Vt

V (Vt) =
(
Γ−1)′ΣΓ−1

= Ω

The reduced form parameters are consistently estimable, but none of them are known

a priori, and there are no restrictions on their values. The problem is that more than

one structural form has the same reduced form, so knowledge of the reduced form

parameters alone isn’t enough to determine the structural parameters. To see this,

consider the model

Y ′
t ΓF = X ′

t BF +EtF

V (EtF) = F ′ΣF
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where F is some arbirary nonsingular G×G matrix. The rf of this new model is

Y ′
t = X ′

t BF (ΓF)−1 +EtF (ΓF)−1

= X ′
t BFF−1Γ−1 +EtFF−1Γ−1

= X ′
t BΓ−1 +EtΓ−1

= X ′
t Π+Vt

Likewise, the covariance of the rf of the transformed model is

V (EtF (ΓF)−1) = V (EtΓ−1)

= Ω

Since the two structural forms lead to the same rf, and the rf is all that is directly

estimable, the models are said to be observationally equivalent. What we need for

identification are restrictions on Γ and B such that the only admissible F is an identity

matrix (if all of the equations are to be identified). Take the coefficient matrices as

partitioned before:




Γ

B


=




1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22




The coefficients of the first equation of the transformed model are simply these coeffi-
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cients multiplied by the first column of F . This gives




Γ

B







f11

F2


=




1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22







f11

F2




For identification of the first equation we need that there be enough restrictions so that

the only admissible 


f11

F2




be the leading column of an identity matrix, so that




1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22







f11

F2


=




1

−γ1

0

β1

0




Note that the third and fifth rows are




Γ32

B22


F2 =




0

0
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Supposing that the leading matrix is of full column rank, e.g.,

ρ







Γ32

B22





= cols







Γ32

B22





= G−1

then the only way this can hold, without additional restrictions on the model’s param-

eters, is if F2 is a vector of zeros. Given that F2 is a vector of zeros, then the first

equation
[

1 Γ12

]



f11

F2


= 1 ⇒ f11 = 1

Therefore, as long as

ρ







Γ32

B22





= G−1

then 


f11

F2


=




1

0G−1




The first equation is identified in this case, so the condition is sufficient for identifica-

tion. It is also necessary, since the condition implies that this submatrix must have at

least G−1 rows. Since this matrix has

G∗∗ +K∗∗ = G−G∗ +K∗∗

rows, we obtain

G−G∗ +K∗∗ ≥ G−1

or

K∗∗ ≥ G∗−1
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which is the previously derived necessary condition.

• When an equation has K∗∗ = G∗−1, is is exactly identified, in that omission of

an identifiying restriction is not possible without loosing consistency.

• When K∗∗ > G∗− 1, the equation is overidentified, since one could drop a re-

striction and still retain consistency. Overidentifying restrictions are therefore

testable. When an equation is overidentified we have more instruments than are

strictly necessary for consistent estimation. Since estimation by IV with more

instruments is more efficient asymptotically, one should employ overidentifying

restrictions if one is confident that they’re true.

• We can repeat this partition for each equation in the system, to see which equa-

tions are identified and which aren’t.

• These results are valid assuming that the only identifying information comes

from knowing which variables appear in which equations, e.g., by exclusion

restrictions, and through the use of a normalization. There are other sorts of

identifying information that can be used. These include

1. Cross equation restrictions

2. Additional restrictions on parameters within equations (as in the Klein

model discussed below)

3. Restrictions on the covariance matrix of the errors

4. Nonlinearities in variables

• When these sorts of information are available, the above conditions aren’t nec-

essary for identification, though they are of course still sufficient.

168



To give an example of how other information can be used, consider the model

Y Γ = XB+E

where Γ is an upper triangular matrix with 1’s on the main diagonal. This is a triangu-

lar system of equations. In this case, the first equation is

y1 = XB·1 +E·1

Since only exogs appear on the rhs, this equation is identified.

The second equation is

y2 = −γ21y1 +XB·2 +E·2

This equation has K∗∗ = 0 excluded exogs, and G∗ = 2 included endogs, so it fails the

order (necessary) condition for identification.

• However, suppose that we have the restriction Σ21 = 0, so that the first and sec-

ond structural errors are uncorrelated. In this case

E(y1tε2t) = E
{
(X ′

t B·1 + ε1t)ε2t
}

= 0

so there’s no problem of simultaneity. If the entire Σ matrix is diagonal, then

following the same logic, all of the equations are identified. This is known as a

fully recursive model.

To give an example of determining identification status, consider the following macro
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model (this is the widely known Klein’s Model 1)

Consumption: Ct = α0 +α1Pt +α2Pt−1 +α3(W
p

t +W g
t )+ ε1t

Investment: It = β0 +β1Pt +β2Pt−1 +β3Kt−1 + ε2t

Private Wages: W p
t = γ0 + γ1Xt + γ2Xt−1 + γ3At + ε3t

Output: Xt = Ct + It +Gt

Profits: Pt = Xt −Tt −W p
t

Capital Stock: Kt = Kt−1 + It

The other variables are the government wage bill, W g
t , taxes, Tt , government nonwage

spending, Gt ,and a time trend, At . The endogenous variables are the lhs variables,

Y ′
t =

[
Ct It W p

t Xt Pt Kt

]

and the predetermined variables are all others:

X ′
t =

[
1 W g

t Gt Tt At Pt−1 Kt−1 Xt−1

]
.

The model written as Y Γ = XB+E gives

Γ =




1 0 0 −1 0 0

0 1 0 −1 0 −1

−α3 0 1 0 1 0

0 0 −γ1 1 −1 0

−α1 −β1 0 0 1 0

0 0 0 0 0 1
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B =




α0 β0 γ0 0 0 0

α3 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 γ3 0 0 0

α2 β2 0 0 0 0

0 β3 0 0 0 1

0 0 γ2 0 0 0




To check this identification of the consumption equation, we need to extract Γ32 and

B22, the submatrices of coefficients of endogs and exogs that don’t appear in this equa-

tion. These are the rows that have zeros in the first column, and we need to drop the

first column. We get




Γ32

B22


=




1 0 −1 0 −1

0 −γ1 1 −1 0

0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1

0 γ2 0 0 0




We need to find a set of 5 rows of this matrix gives a full-rank 5×5 matrix. For
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example, selecting rows 3,4,5,6, and 7 we obtain the matrix

A =




0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1




This matrix is of full rank, so the sufficient condition for identification is met. Counting

included endogs, G∗ = 3, and counting excluded exogs, K∗∗ = 5, so

K∗∗−L = G∗−1

5−L = 3−1

L = 3

• The equation is over-identified by three restrictions, according to the counting

rules, which are correct when the only identifying information are the exclusion

restrictions. However, there is additional information in this case. Both W p
t and

W g
t enter the consumption equation, and their coefficients are restricted to be the

same. For this reason the consumption equation is in fact overidentified by four

restrictions.

11.6 2SLS

When we have no information regarding cross-equation restrictions or the structure of

the error covariance matrix, one can estimate the parameters of a single equation of the

system without regard to the other equations.
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• This isn’t always efficient, as we’ll see, but it has the advantage that misspecifi-

cations in other equations will not affect the consistency of the estimator of the

parameters of the equation of interest.

• Also, estimation of the equation won’t be affected by identification problems in

other equations.

The 2SLS estimator is very simple: in the first stage, each column of Y1 is regressed on

all the weakly exogenous variables in the system, e.g., the entire X matrix. The fitted

values are

Ŷ1 = X(X ′X)−1X ′Y1

= PXY1

= XΠ̂1

Since these fitted values are the projection of Y1 on the space spanned by X , and since

any vector in this space is uncorrelated with ε by assumption, Ŷ1 is uncorrelated with

ε. Since Ŷ1 is simply the reduced-form prediction, it should be correlated with Y1, The

only other requirement is that the instruments be linearly independent. This should be

the case when the order condition is satisfied, since there are more columns in X2 than

in Y1 in this case.

The second stage substitutes Ŷ1 in place of Y1, and estimates by OLS. This original

model is

y = Y1γ1 +X1β1 + ε

= Zδ+ ε
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and the second stage model is

y = Ŷ γ1 +X1β1 + ε.

Since X1 is in the space spanned by X , PX X1 = X1, so we can write the second stage

model as

y = PXY1γ1 +PX X1β1 + ε

= PX Zδ+ ε

The OLS estimator applied to this model is

δ̂ = (Z′PXZ)−1Z′PX y

which is exactly what we get if we estimate using IV, with the reduced form predictions

of the endogs used as instruments. Note that if we define

Ẑ = PX Z

=

[
Ŷ1 X1

]

so that Ẑ are the instruments for Z, then we can write

δ̂ = (Ẑ′Z)−1Ẑ′y

• Important note: OLS on the transformed model can be used to calculate the

2SLS estimate of δ, since we see that it’s equivalent to IV using a particular set

of instruments. However the OLS covariance formula is not valid. We need to
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apply the IV covariance formula already seen above.

Actually, there is also a simplification of the general IV variance formula. Define

Ẑ = PXZ

=

[
Ŷ X

]

The IV covariance estimator would ordinarily be

V̂ (δ̂) =
(
Z′Ẑ
)−1 (

Ẑ′Ẑ
)(

Ẑ′Z
)−1 σ̂2

IV

However, looking at the last term in brackets

Ẑ′Z =

[
Ŷ X

]′[
Y X

]
=




Y ′(PX)Y Y ′(PX)X

X ′Y X ′X




but since PX is idempotent and since PX X = X , we can write

[
Ŷi Xi

]′[
Yi Xi

]
=




Y ′
i PX PXYi Y ′

i PX Xi

X ′
i PXYi X ′

i Xi




=

[
Ŷi Xi

]′[
Ŷi Xi

]

= Ẑ′Ẑ

Therefore, the second and last term in the variance formula cancel, so the 2SLS varcov

estimator simplifies to

V̂ (δ̂) =
(
Z′Ẑ
)−1 σ̂2

IV
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which, following some algebra similar to the above, can also be written as

V̂ (δ̂) =
(
Ẑ′Ẑ
)−1 σ̂2

IV

Properties of 2SLS:

1. Consistent

2. Asymptotically normal

3. Biased when the mean esists (the existence of moments is a technical issue we

won’t go into here).

4. Asymptotically inefficient, except in special circumstances (more on this later).

11.7 Testing the overidentifying restrictions

The selection of which variables are endogs and which are exogs is part of the spec-

ification of the model. As such, there is room for error here: one might erroneously

classify a variable as exog when it is in fact correlated with the error term. A general

test for the specification on the model can be formulated as follows:

The IV estimator can be calculated by applying OLS to the transformed model, so

the IV objective function at the maximixed value is

s(β̂IV ) =
(

y−X β̂IV

)′
PW

(
y−X β̂IV

)
,
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but

ε̂IV = y−X β̂IV

= y−X(X ′PW X)−1X ′PW y

=
(
I −X(X ′PW X)−1X ′PW

)
y

=
(
I −X(X ′PW X)−1X ′PW

)
(Xβ+ ε)

= A(Xβ+ ε)

where

A ≡ I −X(X ′PW X)−1X ′PW

so

s(β̂IV ) =
(
ε′+β′X ′)A′PW A(Xβ+ ε)

Moreover, A′PW A is idempotent, as can be verified by multiplication:

A′PW A =
(
I −PW X(X ′PW X)−1X ′)PW

(
I −X(X ′PW X)−1X ′PW

)

=
(
PW −PW X(X ′PW X)−1X ′PW

)(
PW −PW X(X ′PW X)−1X ′PW

)

=
(
I −PW X(X ′PW X)−1X ′)PW .

Furthermore, A is orthogonal to X

AX =
(
I −X(X ′PW X)−1X ′PW

)
X

= X −X

= 0
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so

s(β̂IV ) = ε′A′PW Aε

Supposing the ε are normally distributed, with variance σ2, then the random variable

s(β̂IV )

σ2 =
ε′A′PW Aε

σ2

is a quadratic form of a N(0,1) random variable with an idempotent matrix in the

middle, so
s(β̂IV )

σ2 ∼ χ2(ρ(A′PW A))

This isn’t available, since we need to estimate σ2. Substituting a consistent estimator,

s(β̂IV )

σ̂2

a∼ χ2(ρ(A′PW A))

• Even if the ε aren’t normally distributed, the asymptotic result still holds. The

last thing we need to determine is the rank of the idempotent matrix. We have

A′PW A =
(
PW −PW X(X ′PW X)−1X ′PW

)

so

ρ(A′PW A) = Tr
(
PW −PW X(X ′PW X)−1X ′PW

)

= TrPW −TrX ′PW PW X(X ′PW X)−1

= TrW (W ′W )−1W ′−KX

= TrW ′W (W ′W )−1 −KX

= KW −KX
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where KW is the number of columns of W and KX is the number of columns of

X . The degrees of freedom of the test is simply the number of overidentifying re-

strictions: the number of instruments we have beyond the number that is strictly

necessary for consistent estimation.

• This test is an overall specification test: the joint null hypothesis is that the

model is correctly specified and that the W form valid instruments (e.g., that

the variables classified as exogs really are uncorrelated with ε. Rejection can

mean that either the model y = Zδ+ε is misspecified, or that there is correlation

between X and ε.

• Note that since

ε̂IV = Aε

and

s(β̂IV ) = ε′A′PW Aε

we can write

s(β̂IV )

σ̂2
=

(
ε̂′W (W ′W )−1W ′)(W (W ′W )−1W ′ε̂

)

ε̂′ε̂/n

= n(RSSε̂IV |W /TSSε̂IV )

= nR2
u

where R2
u is the uncentered R2 from a regression of the IV residuals on all of the

instruments W . This is a convenient way to calculate the test statistic.

On an aside, consider IV estimation of a just-identified model, using the standard no-

tation
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y = Xβ+ ε

and W is the matrix of instruments. If we have exact identification then cols(W) =

cols(X). The transformed model is

PW y = PW Xβ+PW ε

and the fonc are

X ′PW (y−X β̂IV ) = 0

The IV estimator is

β̂IV =
(
X ′PW X

)−1
X ′PW y

Considering the inverse here

(
X ′PW X

)−1
=

(
X ′W (W ′W )−1W ′X

)−1

= (W ′X)−1 (X ′W (W ′W )−1)−1

= (W ′X)−1(W ′W )
(
X ′W

)−1

Now multiplying this by X ′PW y, we obtain

β̂IV = (W ′X)−1(W ′W )
(
X ′W

)−1
X ′PW y

= (W ′X)−1(W ′W )
(
X ′W

)−1
X ′W (W ′W )−1W ′y

= (W ′X)−1W ′y
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The objective function for the generalized IV estimator is

s(β̂IV ) =
(

y−X β̂IV

)′
PW

(
y−X β̂IV

)

= y′PW

(
y−X β̂IV

)
− β̂′

IV X ′PW

(
y−X β̂IV

)

= y′PW

(
y−X β̂IV

)
− β̂′

IV X ′PW y+ β̂′
IV X ′PW X β̂IV

= y′PW

(
y−X β̂IV

)
− β̂′

IV

(
X ′PW y+X ′PW X β̂IV

)

= y′PW

(
y−X β̂IV

)

by the fonc for generalized IV. However, when we’re in the just indentified case, this

is

s(β̂IV ) = y′PW
(
y−X(W ′X)−1W ′y

)

= y′PW
(
I −X(W ′X)−1W ′)y

= y′
(
W (W ′W )−1W ′−W (W ′W )−1W ′X(W ′X)−1W ′)y

= 0

The value of the objective function of the IV estimator is zero in the just identified case.

This makes sense, since we’ve already shown that the objective function after dividing

by σ2 is asymptotically χ2 with degrees of freedom equal to the number of overidenti-

fying restrictions. In the present case, there are no overidentifying restrictions, so we

have a χ2(0) rv, which has mean 0 and variance 0, e.g., it’s simply 0. This means we’re

not able to test the identifying restrictions in the case of exact identification.
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11.8 System methods of estimation

2SLS is a single equation method of estimation, as noted above. The advantage of a

single equation method is that it’s unaffected by the other equations of the system, so

they don’t need to be specified (except for defining what are the exogs, so 2SLS can

use the complete set of instruments). The disadvantage of 2SLS is that it’s inefficient,

in general.

• Recall that overidentification improves efficiency of estimation, since an overi-

dentified equation can use more instruments than are necessary for consistent

estimation.

• Secondly, the assumption is that

Y Γ = XB+E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)

• Since there is no autocorrelation of the Et ’s, and since the columns of E are

individually homoscedastic, then

Ψ =




σ11In σ12In · · · σ1GIn

σ22In
...

. . .
...

· σGGIn




= Σ⊗ In

This means that the structural equations are heteroscedastic and correlated with

one another
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• In general, ignoring this will lead to inefficient estimation, following the sec-

tion on GLS. When equations are correlated with one another estimation should

account for the correlation in order to obtain efficiency.

• Also, since the equations are correlated, information about one equation is im-

plicitly information about all equations. Therefore, overidentification restric-

tions in any equation improve efficiency for all equations, even the just identified

equations.

• Single equation methods can’t use these types of information, and are therefore

inefficient (in general).

11.8.1 3SLS

Following our above notation, each structural equation can be written as

yi = Yiγ1 +Xiβ1 + εi

= Ziδi + εi

Grouping the G equations together we get




y1

y2

...

yG




=




Z1 0 · · · 0

0 Z2
...

...
. . . 0

0 · · · 0 ZG







δ1

δ2

...

δG




+




ε1

ε2

...

εG




or

y = Zδ+ ε
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where we already have that

E(εε′) = Ψ

= Σ⊗ In

The 3SLS estimator is just 2SLS combined with a GLS correction that takes advantage

of the structure of Ψ. Define Ẑ as

Ẑ =




X(X ′X)−1X ′Z1 0 · · · 0

0 X(X ′X)−1X ′Z2
...

...
. . . 0

0 · · · 0 X(X ′X)−1X ′ZG




=




Ŷ1 X1 0 · · · 0

0 Ŷ2 X2
...

...
. . . 0

0 · · · 0 ŶG XG




These instruments are simply the unrestricted rf predicitions of the endogs, com-

bined with the exogs. The distinction is that if the model is overidentified, then

Π = BΓ−1

may be subject to some zero restrictions, depending on the restrictions on Γ and B,

and Π̂ does not impose these restrictions. Also, note that Π̂ is calculated using OLS

equation by equation. More on this later.
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The 2SLS estimator would be

δ̂ = (Ẑ′Z)−1Ẑ′y

as can be verified by simple multiplication, and noting that the inverse of a block-

diagonal matrix is just the matrix with the inverses of the blocks on the main diagonal.

This IV estimator still ignores the covariance information. The natural extension is

to add the GLS transformation, putting the inverse of the error covariance into the

formula, which gives the 3SLS estimator

δ̂3SLS =
(

Ẑ′ (Σ⊗ In)
−1 Z

)−1
Ẑ′ (Σ⊗ In)

−1 y

=
(
Ẑ′ (Σ−1 ⊗ In

)
Z
)−1

Ẑ′ (Σ−1 ⊗ In
)

y

This estimator requires knowledge of Σ. The solution is to define a feasible estimator

using a consistent estimator of Σ. The obvious solution is to use an estimator based on

the 2SLS residuals:

ε̂i = yi −Ziδ̂i,2SLS

(IMPORTANT NOTE: this is calculated using Zi, not Ẑi). Then the element i, j of Σ

is estimated by

σ̂i j =
ε̂′iε̂ j

n

Substitute Σ̂ into the formula above to get the feasible 3SLS estimator.

Analogously to what we did in the case of 2SLS, the asymptotic distribution of the

3SLS estimator can be shown to be

√
n
(

δ̂3SLS −δ
)

a∼ N


0, lim

n→∞
E





(
Ẑ′ (Σ⊗ In)

−1 Ẑ
n

)−1
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A formula for estimating the variance of the 3SLS estimator in finite samples (can-

celling out the powers of n) is

V̂
(

δ̂3SLS

)
=
(
Ẑ′ (Σ̂−1 ⊗ In

)
Ẑ
)−1

• This is analogous to the 2SLS formula in equation (??), combined with the GLS

correction.

• In the case that all equations are just identified, 3SLS is numerically equivalent

to 2SLS. Proving this is easiest if we use a GMM interpretation of 2SLS and

3SLS. GMM is presented in the next econometrics course. For now, take it on

faith.

The 3SLS estimator is based upon the rf parameter estimator Π̂, calculated equation

by equation using OLS:

Π̂ = (X ′X)−1X ′Y

which is simply

Π̂ = (X ′X)−1X ′
[

y1 y2 · · · yG

]

that is, OLS equation by equation using all the exogs in the estimation of each column

of Π.

It may seem odd that we use OLS on the reduced form, since the rf equations are

correlated:

Y ′
t = X ′

t BΓ−1 +E ′
t Γ−1

= X ′
t Π+V ′

t
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and

Vt =
(
Γ−1)′Et ∼ N

(
0,
(
Γ−1)′ΣΓ−1

)
,∀t

Let this var-cov matrix be indicated by

Ξ =
(
Γ−1)′ΣΓ−1

OLS equation by equation to get the rf is equivalent to




y1

y2

...

yG




=




X 0 · · · 0

0 X
...

...
. . . 0

0 · · · 0 X







π1

π2

...

πG




+




v1

v2

...

vG




where yi is the n×1 vector of observations of the ith endog, X is the entire n×K matrix

of exogs, πi is the ith column of Π, and vi is the ith column of V. Use the notation

y = Xπ+ v

to indicate the pooled model. Following this notation, the error covariance matrix is

V (v) = Ξ⊗ In

• This is a special case of a type of model known as a set of seemingly unrelated

equations (SUR) since the parameter vector of each equation is different. The

equations are contemporanously correlated, however. The general case would

have a different Xi for each equation.

• Note that each equation of the system individually satisfies the classical assump-

187



tions.

• However, pooled estimation using the GLS correction is more efficient, since

equation-by-equation estimation is equivalent to pooled estimation, since X is

block diagonal, but ignoring the covariance information.

• The model is estimated by GLS, where Ξ is estimated using the OLS residuals

from equation-by-equation estimation, which are consistent.

• In the special case that all the Xi are the same, which is true in the present case

of estimation of the rf parameters, SUR ≡OLS. To show this note that in this

case X = In ⊗X . Using the rules

1. (A⊗B)−1 = (A−1 ⊗B−1)

2. (A⊗B)′ = (A′⊗B′) and

3. (A⊗B)(C⊗D) = (AC⊗BD), we get

π̂SUR =
(
(In ⊗X)′ (Ξ⊗ In)

−1 (In ⊗X)
)−1

(In ⊗X)′ (Ξ⊗ In)
−1 y

=
((

Ξ−1 ⊗X ′)(In ⊗X)
)−1 (Ξ−1 ⊗X ′)y

=
(
Ξ⊗ (X ′X)−1

)(
Ξ−1 ⊗X ′)y

=
[
IG⊗ (X ′X)−1X ′]y

=




π̂1

π̂2

...

π̂G




• So the unrestricted rf coefficients can be estimated efficiently (assuming normal-

ity) by OLS, even if the equations are correlated.
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• We have ignored any potential zeros in the matrix Π, which if they exist could

potentially increase the efficiency of estimation of the rf.

• Another example where SUR≡OLS is in estimation of vector autoregressions.

See two sections ahead.

11.8.2 FIML

Full information maximum likelihood is an alternative estimation method. FIML will

be asymptotically efficient, since ML estimators based on a given information set are

asymptotically efficient w.r.t. all other estimators that use the same information set,

and in the case of the full-information ML estimator we use the entire information set.

The 2SLS and 3SLS estimators don’t require distributional assumptions, while FIML

of course does. Our model is, recall

Y ′
t Γ = X ′

t B+E ′
t

Et ∼ N(0,Σ),∀t

E(EtE
′
s) = 0, t 6= s

The joint normality of Et means that the density for Et is the multivariate normal,

which is

(2π)−g/2 (detΣ−1)−1/2
exp

(
−1

2
E ′

t Σ
−1Et

)

The transformation from Et to Yt requires the Jacobian

|det
dEt

dY ′
t
| = |detΓ|
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so the density for Yt is

(2π)−G/2|detΓ|
(
detΣ−1)−1/2

exp

(
−1

2

(
Y ′

t Γ−X ′
t B
)

Σ−1 (Y ′
t Γ−X ′

t B
)′
)

Given the assumption of independence over time, the joint log-likelihood function is

lnL(B,Γ,Σ) =−nG
2

ln(2π)+n ln(|detΓ|)− n
2

lndetΣ−1− 1
2

n

∑
t=1

(
Y ′

t Γ−X ′
t B
)

Σ−1 (Y ′
t Γ−X ′

t B
)′

• This is a nonlinear in the parameters objective function. Maximixation of this

can be done using iterative numeric methods. We’ll see how to do this in the

next section.

• It turns out that the asymptotic distribution of 3SLS and FIML are the same,

assuming normality of the errors.

• One can calculate the FIML estimator by iterating the 3SLS estimator, thus

avoiding the use of a nonlinear optimizer. The steps are

1. Calculate Γ̂3SLS and B̂3SLS as normal.

2. Calculate Π̂ = B̂3SLSΓ̂−1
3SLS. This is new, we didn’t estimate Π in this way

before. This estimator may have some zeros in it. When Greene says

iterated 3SLS doesn’t lead to FIML, he means this for a procedure that

doesn’t update Π̂, but only updates Σ̂ and B̂ and Γ̂. If you update Π̂ you do

converge to FIML.

3. Calculate the instruments Ŷ = XΠ̂ and calculate Σ̂ using Γ̂ and B̂ to get the

estimated errors, applying the usual estimator.

4. Apply 3SLS using these new instruments and the estimate of Σ.

5. Repeat steps 2-4 until there is no change in the parameters.
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• FIML is fully efficient, since it’s an ML estimator that uses all information. This

implies that 3SLS is fully efficient when the errors are normally distributed.

Also, if each equation is just identified and the errors are normal, then 2SLS will

be fully efficient, since in this case 2SLS≡3SLS.

• When the errors aren’t normally distributed, the likelihood function is of course

different than what’s written above.
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12 Limited dependent variables

Up until now we’ve considered models where the lhs variable typically is assumed

to take on values on the real line. For example, if the model is yt = x′tβ + εt and

εt is assumed to be normally distributed, then yt will also be normally distributed,

conditional on xt , and therefore will take on values on ℜ. This is unreasonable in many

cases. For example, economic variables are often nonnegative (for example prices and

quatities), or the variables may be restricted to integers (for example, the number of

visits to the doctor a person makes in a year). In this section we’ll see a few examples

of models for these sorts of data.

12.1 Choice between two objects: the probit model

Suppose that an individual has to choose between two mutually exclusive possibilities,

for example, between one of two job offers. Let indirect utility in the two states be

v j(p,m,z)+ ε j, j = 0,1, where p is a price vector, m is income, and z is a vector of

other variables related to the person’s preferences or characteristics of the object. The

first object ( j = 1) is chosen if

ε0 + v0(m,p,z) < v1(m,p,z)+ ε1

or if

ε0 − ε1 < v1(m,p,z)− v0(m,p,z)

Define ε = ε0 − ε1, let x collect m, p and z, and let ∆v(x) = v1(x)− v0(x). The first

object is chosen if

ε < ∆v(x).
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Define y = 1 if the consumer chooses object j = 1, y = 0 otherwise. The probability

the first object is chosen is

Pr(y = 1) = Fε [∆v(x)]

≡ p(x,θ),

where θ are the parameters of the utility functions and the distribution function of ε.

A fairly simple version of this model is the standard probit model. Suppose that

v0(m,p,z) = α0 +β0m+p′γ0

v1(m,p,z) = α1 +β1m+p′γ1

and 


ε0

ε1


∼ N







0

0


 ,




σ11 σ12

· σ22





 .

If we make the restrictions σ11 = 0.5,σ12 = 0,σ22 = 0.5 then

ε = ε0 − ε1 ∼ N (0,1) .

Also,

∆v(w) = (α1 −α0)+(β1 −β0)m+p′ (γ1 − γ0)

= δ+φm+p′ψ
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and

Pr(y = 1) = Φ(δ+φm+p′ψ)

≡ Φ(x′θ).

where Φ(·) is the standard normal distribution function and θ is the vector formed of

the parameters δ,φ and ψ, which are in turn functions of the parameters αi, βi and γi,

i = 1,2.

Each observation can be thought of as a Bernoulli trial with probability of success

equal to Φ(x′θ). The density function for a single Bernoulli trial is

Pr(y|x) = Φ(x′θ)y(1−Φ(x′θ))(1−y),y = 0,1.

With n i.i.d. observations indexed by t, the likelihood function is

lnL(θ) =
n

∏
t=1

Φ(x′tθ)yt (1−Φ(x′tθ))(1−yt)

and the average log-likelihood function is

sn(θ) =
1
n

n

∑
i=1

(
yt lnΦ(x′tθ)+(1− yt) ln

[
1−Φ(x′tθ)

])

This is a nonlinear in the parameters function. We’ll discuss how it can be maximized

later. Note that Gauss has a function to calculate Φ(·) , it is cdfn(·) . With this it’s not

hard to program the likelihood function.

A few comments:

• The parameters in θ are consistently estimated. On the other hand this has re-

quired making assumptions regarding the parameters σ11,σ12 and σ22. Without
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these restrictions the distribution function of ε is not identified, so the other pa-

rameters aren’t identified. Also, knowledge of θ does not allow recovery of the

αi,βi and γi, since there are twice as many unknowns as equations.

• The particular restrictions used to get that ε ∼ N(0,1) are not unique. We could

have just as well assumed that ε0 ∼ N(0,1) and ε1 = 0. This would give the same

distribution for ε.

• Binary response models of this sort are never identified without these sorts of

restrictions.

The logit model is very similar to the probit model. Under the logit model the ε j, j = 12

are assumed to be iid extreme value random variables. This leads to

Fε(z) =
1

(1+ exp(−z))

so

Pr(y = 1) =
1

(1+ exp(−x′θ))

It turns out that the probit and logit models give very similar estimates for Pr(y = 1)

and the marginal effects Dx Pr(y = 1). These functions and functionals of them are

usually of most interest. Therefore the choice between logit and probit models is not

very important, in the binary choice case. The coefficients are different (there is a

scaling factor that related the coefficients). However, the coefficient themselves aren’t

usually of much interest and they are difficult to interpret.

12.2 Count data

Another situation where a continuous normally distributed dependent variable is un-

reasonable is the case where it represent the number of times some event occurs. For
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example, the dependent variable could be the number of auto accidents in a week-

end, or the number of political leaders that make fools of themselve in a week. Such

variables are termed count data dependent variables.

The Poisson model is one of the simplest models for count data. The Poisson

density is

fY (y) =
exp(−λ)λy

y! ,y = 0,1,2, ...

λ > 0.

To allow for conditioning variables x, make λ a function of x. We need to ensure that

λ is positive for all x. The most popular parameterization is

λ = exp(x′θ).

The log-likelihood for an individual observation is

st = −exp(x′tθ)+ yt exp(x′tθ)− ln(yt!)

and the average likelihood function is just the sum of this divided by the sample size:

sn(θ) =
1
n

n

∑
i=1

(
−exp(x′tθ)+ yt exp(x′tθ)− ln(yt!)

)
.

With this, θ can be estimated by ML.

The Poisson model exhibits a restriction that may not be desirable. This is that

E(y) = V (y) = λ. Usually there is no reason why the mean should be equal to the

variance. There are generalizations of the Poisson model that relax this restriction.

The way this is done is to make λ a function of another random variable, then integrate

196



this variable out. That is

λ = exp(x′θ+η)

η ∼ fη(z,φ)

so the joint density of y and η is the product of the conditional density of y given η,

and the marginal of η:

fY (y,η|θ,φ) =
exp(−exp(x′θ+η))exp(x′θ+η)y

y!
fη(η,φ)

and the marginal density of y is obtained by integrating out η:

fY (y|θ,φ) =

�
Z

exp(−exp(x′θ+ z))exp(x′θ+ z)y

y!
fη(z,φ)dz

This effectively introduces other parameters φ into the densisty which relax the Poisson

mean-variance restriction.

12.3 Duration data

In some cases the dependent variable may be the time that passes between the oc-

curence of two events. For example, it may be the duration of a strike, or the time

needed to find a job once one is unemployed. Such variables take on values on the

positive real line, and are referred to as duration data.

A spell is the period of time between the occurence of initial event and the con-

cluding event. For example, the initial event could be the loss of a job, and the final

event is the finding of a new job. The spell is the period of unemployment.

Let t0 be the time the initial event occurs, and t1 be the time the concluding event

occurs. For simplicity, assume that time is measured in years. The random variable D
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is the duration of the spell, D = t1 − t0. Define the density function of D, fD(t), with

distribution function FD(t) = Pr(D < t).

Several questions may be of interest. For example, one might wish to know the

expected time one has to wait to find a job given that one has already waited s years.

The probability that a spell lasts s years is

Pr(D > s) = 1−Pr(D ≤ s) = 1−FD(s).

The density of D conditional on the spell already having lasted s years is

fD(t|D > s) =
fD(t)

1−FD(s)
.

The expectanced additional time required for the spell to end given that is has already

lasted s years is the expectation of D with respect to this density, minus s.

E = E(D|D > s)− s =

( � ∞

t
z

fD(z)
1−FD(s)

ds

)
− s

To estimate this function, one needs to specify the density fD(t) as a parametric

density, then estimate by maximum likelihood. There are a number of possibilities

including the exponential density, the lognormal, etc. A reasonably flexible model that

is a generalization of the exponential density is the Weibull density

fD(t|θ) = e−(λt)γ
λγ(λt)γ−1.

According to this model, E(D) = λ−γ. The log-likelihood is just the product of the log

densities.

To illustrate application of this model, 402 observations on the length (in months)

of strikes in the industrial sector were used to fit a Weibull model. The parameter
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estimates are

lllParameterEstimateSt.Errorλ

& 0.559 & 0.034 \\\(\gamma\)& 0.867 & 0.033\end{tabular}\end{equation} and the

log-likelihood value is -659.3

A plot of E, with 95% confidence bands follows. The plot is accompanied by

a nonparametric Kaplan-Meier estimate of life-expectancy. This nonparametric esti-

mator of E simply averages all spell lengths greater than t, and subtracts t. This is

consistent by the LLN.

In the figure one can seel that the model doesn’t fit the data well, in that it predicts

E quite differently than does the nonparametric model. It seems that many strikes end

quickly, since E is relatively low initially, but that if a strike lasts a month then it is

likely to last considerably longer. Due to the dramatic change in the rate that spells

end as a function of t, one might specify fD(t) as a mixture of two Weibull densities,

fD(t|θ) = δ
(

e−(λ1t)γ1 λ1γ1(λ1t)γ1−1
)

+(1−δ)
(

e−(λ2t)γ2 λ2γ2(λ2t)γ2−1
)

.

The parameters γi and λi, i = 1,2 are the parameters of the two Weibull densities, and

δ is the parameter that mixes the two.

With the same data, θ can be estimated using the mixed model. The results are a

log-likelihood = -623.17. The parameter estimates are

Parameter Estimate St. Error

λ1 0.233 0.016

γ1 1.722 0.166

λ2 1.731 0.101

γ2 1.522 0.096

δ 0.428 0.035
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This model leads to a fit for E in the figure

Note that the parametric and nonparametric fits are quite close to one another, up

to around 6 months. The disagreement after this point is not too important, since

less that 5% of strikes last more than 6 months, which implies that the Kaplan-Meier

nonparametric estimate has a high variance (since it’s an average of a small number of

observations).

12.4 The Newton method

The Newton-Raphson method uses information about the slope and curvature of the

objective function to determine which direction and how far to move from an initial

point. Supposing we’re trying to maximize sn(θ). Take a second order Taylor’s series

approximation of sn(θ) about θk (an initial guess).

sn(θ) ≈ sn(θk)+g(θk)′
(

θ−θk
)

+1/2
(

θ−θk
)′

H(θk)
(

θ−θk
)

To attempt to maximize sn(θ), we can maximize the portion of the right-hand side that

depends on θ, e.g, we can maximize

s̃(θ) = g(θk)′θ+1/2
(

θ−θk
)′

H(θk)
(

θ−θk
)

with respect to θ. This is a much easier problem, since it is a quadratic function in θ,

so it has linear first order conditions. These are

Dθs̃(θ) = g(θk)+H(θk)
(

θ−θk
)
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So the solution for the next round estimate is

θk+1 = θk −H(θk)−1g(θk)

However, it’s good to include a stepsize, since the approximation to sn(θ) may be

bad far away from the maximizer θ̂, so the actual iteration formula is

θk+1 = θk −akH(θk)−1g(θk)

• A potential problem is that the Hessian may not be negative definite when we’re

far from the maximizing point. So −H(θk)−1 may not be positive definite, and

−H(θk)−1g(θk) may not define an increasing direction of search. This can hap-

pen when the objective function may have flat regions, in which case the Hes-

sian matrix is very ill-conditioned (e.g., is nearly singular), or when we’re in the

vicinity of a local minimum, H(θk) is positive definite, and our direction is a de-

creasing direction of search. Matrix inverses by computers are subject to large

errors when the matrix is ill-conditioned. Also, we certainly don’t want to go

in the direction of a minimum when we’re maximizing. To solve this problem,

Quasi-Newton methods simply add a positive definite component to H(θ) to en-

sure that the resulting matrix is positive definite, e.g., Q = −H(θ)+bI, where b

is chosen large enough so that Q is well-conditioned. This has the benefit that

improvement in the objective function is guaranteed.

• Another variation of quasi-Newton methods is to approximate the Hessian by

using successive gradient evaluations. This avoids actual calculation of the Hes-

sian, which is an order of magnitude (in the dimension of the parameter vector)

more costly than calculation of the gradient. They can be done to ensure that the
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approximation is p.d. DFP and BFGS are two well-known examples.

Example of Newton iterations Consider the funcion

f (x) = lnx−1.0
x

1.0+ e−1.0x

This has a maximum at the point x = 1.058416 (approximately) as we can see by

f ′(1.058416) = 2.206×10−7

Consider applying Newton-Raphson. The initial point is z = 0.5 The second order

approximation is

g(x) = f (z)+ f ′(z)(x− z)+
1
2

f ′′(z)(x− z)2

Plotting the true function and the approximation:

The next round expansion point is obtained by maximizing the approximation:

g(x) Candidate(s) for extrema: {−.82563} , at {{x = .78371}}

Now set the expansion point to the new value, and re-plot:

z2 = .78371

g2(x) = f (z2)+ f ′(z2)(x− z2)+ 1
2 f ′′(z2)(x− z2)

2

g2(x) Candidate(s) for extrema: {−.73735} , at {{x = .99458}}

Another round:

z3 = .99458

g3(x) = f (z3)+ f ′(z3)(x− z3)+ 1
2 f ′′(z3)(x− z3)

2

g3(x) Candidate(s) for extrema: {−.72907} , at {{x = 1.055}} . So after two NR

iterations we’re already pretty close to the maximum and the approximation is quite

close to the function, up to second order.

202



Stopping criteria The last thing we need is to decide when to stop. A digital com-

puter is subject to limited machine precision and round-off errors. For these reasons,

it is unreasonable to hope that a program can exactly find the point that maximizes a

function, and in fact, more than about 6-10 decimals of precision is usually infeasible.

Some stopping criteria are:

• Negligable change in parameters:

|θk
j −θk−1

j | < ε1,∀ j

• Negligable relative change:

|
θk

j −θk−1
j

θk−1
j

| < ε2,∀ j

• Negligable change of function:

|s(θk)− s(θk−1)| < ε3

• Gradient negligibly different from zero:

|g j(θk)−g j(θk−1)| < ε4,∀ j

• Or, even better, check all of these.

• Also, if we’re maximizing, it’s good to check that the last round Hessian is

negative definite.
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Starting values The Newton-Raphson and related algorithms work well if the objec-

tive function is concave (when maximizing), but not so well if there are convex regions

and local minima or multiple local maxima. The algorithm may converge to a local

minimum or to a local maximum that is not optimal. The algorithm may also have

difficulties converging at all.

• The usual way to “ensure” that a global maximum has been found is to use

many different starting values, and choose the solution that returns the highest

objective function value. THIS IS IMPORTANT in practice.
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13 Models for time series data

Hamilton, Time Series Analysis is a good reference for this section. This is very in-

complete and contributions would be very welcome.

Up to now we’ve considered the behavior of the dependent variable yt as a function

of other variables xt . These variables can of course contain lagged dependent variables,

e.g., xt = (wt ,yt−1, ...,yt− j). Pure time series methods consider the behavior of yt as

a function only of its own lagged values, unconditional on other observable variables.

One can think of this as modeling the behavior of yt after marginalizing out all other

variables. While it’s not immediately clear why a model that has other explanatory

variables should marginalize to a linear in the parameters time series model, most time

series work is done with linear models, though nonlinear time series is also a large and

growing field. We’ll stick with linear time series models.

13.1 Basic concepts

Definition 20 (Stochastic process) A stochastic process is a sequence of random vari-

ables, indexed by time:

{Yt}∞
t=−∞ (11)

Definition 21 (Time series) A time series is one observation of a stochastic process,

over a specific interval:

{yt}n
t=1 (12)

So a time series is a sample of size n from a stochastic process. It’s important to

keep in mind that conceptually, one could draw another sample, and that the values

would be different.
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Definition 22 (Autocovariance) The jth autocovariance of a stochastic process is

γ jt = E(yt −µt)(yt− j −µt− j) (13)

where µt = E (yt) .

Definition 23 (Covariance (weak) stationarity) A stochastic process is covariance

stationary if it has time constant mean and autocovariances of all orders:

µt = µ,∀t

γ jt = γ j,∀t

As we’ve seen, this implies that γ j = γ− j : the autocovariances depend only one the

interval between observations, but not the time of the observations.

Definition 24 (Strong stationarity) A stochastic process is strongly stationary if the

joint distribution of an arbitrary collection of the {Yt} doesn’t depend on t.

Since moments are determined by the distribution, strong stationarity⇒weak sta-

tionarity.

What is the mean of Yt? The time series is one sample from the stochastic process.

One could think of M repeated samples from the stoch. proc., e.g., {ym
t } By a LLN,

we would expect that

lim
M→∞

1
M

M

∑
m=1

ytm
p→ E(Yt)

The problem is, we have only one sample to work with, since we can’t go back in time

and collect another. How can E(Yt) be estimated then? It turns out that ergodicity is

the needed property.
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Definition 25 (Ergodicity) A stationary stochastic process is ergodic (for the mean)

if the time average converges to the mean

1
n

n

∑
t=1

yt
p→ µ (14)

A sufficient condition for ergodicity is that the autocovariances be absolutely summable:

∞

∑
j=0

|γ j| < ∞

This implies that the autocovariances die off, so that the yt are not so strongly depen-

dent that they don’t satisfy a LLN.

Definition 26 (Autocorrelation) The jth autocorrelation, ρ j is just the jth autoco-

variance divided by the variance:

ρ j =
γ j

γ0
(15)

Definition 27 (White noise) White noise is just the time series literature term for a

classical error. εt is white noise if i) E(εt) = 0,∀t, ii) V (εt) = σ2, ∀t, and iii) εt and εs

are independent, t 6= s. Gaussian white noise just adds a normality assumption.

13.2 ARMA models

With these concepts, we can discuss ARMA models. These are closely related to the

AR and MA error processes that we’ve already discussed. The main difference is that

the lhs variable is observed directly now.
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13.2.1 MA(q) processes

A qth order moving average (MA) process is

yt = µ+ εt +θ1εt−1 +θ2εt−2 + · · ·+θqεt−q

where εt is white noise. The variance is

γ0 = E (yt −µ)2

= E
(
εt +θ1εt−1 +θ2εt−2 + · · ·+θqεt−q

)2

= σ2
(
1+θ2

1 +θ2
2 + · · ·+θ2

q

)

Similarly, the autocovariances are

γ j = θ j +θ j+1θ1 +θ j+2θ2 + · · ·+θqθq− j, j ≤ q

= 0, j > q

Therefore an MA(q) process is necessarily covariance stationary and ergodic, as long

as σ2 and all of the θ j are finite.

13.2.2 AR(p) processes

An AR(p) process can be represented as

yt = c+φ1yt−1 +φ2yt−2 + · · ·+φpyt−p + εt
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The dynamic behavior of an AR(p) process can be studied by writing this pth order

difference equation as a vector first order difference equation:




yt

yt−1

...

yt−p+1




=




c

0
...

0







φ1 φ2 · · · φp

1 0 0 0

0 1 0
. . . 0

...
. . . . . . . . . 0 · · ·

0 · · · 0 1 0







yt−1

yt−2

...

yt−p




+




εt

0
...

0




or

Yt = C +FYt−1 +Et

With this, we can recursively work forward in time:

Yt+1 = C +FYt +Et+1

= C +F (C +FYt−1 +Et)+Et+1

= C +FC +F2Yt−1 +FEt +Et+1

and

Yt+2 = C +FYt+1 +Et+2

= C +F
(
C +FC +F2Yt−1 +FEt +Et+1

)
+Et+2

= C +FC +F2C +F3Yt−1 +F2Et +FEt+1 +Et+2

or in general

Yt+ j = C +FC + · · ·+F jC +F j+1Yt−1 +F jEt +F j−1Et+1 + · · ·+FEt+ j−1 +Et+ j
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Consider the impact of a shock in period t on yt+ j. This is simply

∂Yt+ j

∂E ′
t (1,1)

= F j
(1,1)

If the system is to be stationary, then as we move forward in time this impact must

die off. Otherwise a shock causes a permanent change in the mean of yt . Therefore,

stationarity requires that

lim
j→∞

F j
(1,1) = 0

• Save this result, we’ll need it in a minute.

Consider the eigenvalues of the matrix F. These are the for λ such that

|F −λIP| = 0

The determinant here can be expressed as a polynomial. for example, for p = 1, the

matrix F is simply

F = φ1

so

|φ1 −λ| = 0

can be written as

φ1 −λ = 0

When p = 2, the matrix F is

F =




φ1 φ2

1 0
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so

F −λIP =




φ1 −λ φ2

1 −λ




and

|F −λIP| = λ2 −λφ1 −φ2

So the eigenvalues are the roots of the polynomial

λ2 −λφ1 −φ2

which can be found using the quadratic equation. This generalizes. For a pth order AR

process, the eigenvalues are the roots of

λp −λp−1φ1 −λp−2φ2 −·· ·−λφp−1 −φp = 0

Supposing that all of the roots of this polynomial are distinct, then the matrix F can be

factored as

F = T ΛT−1

where T is the matrix which has as its columns the eigenvectors of F, and Λ is a

diagonal matrix with the eigenvalues on the main diagonal. Using this decomposition,

we can write

F j =
(
T ΛT−1)(T ΛT−1) · · ·

(
T ΛT−1)

where T ΛT−1 is repeated j times. This gives

F j = T Λ jT−1
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and

Λ j =




λ j
1 0 0

0 λ j
2

. . .

0 λ j
p




Supposing that the λi i = 1,2, ..., p are all real valued, it is clear that

lim
j→∞

F j
(1,1) = 0

requires that

|λi| < 1, i = 1,2, ..., p

e.g., the eigenvalues must be less than one in absolute value.

• It may be the case that some eigenvalues are complex-valued. The previous

result generalizes to the requirement that the eigenvalues be less than one in

modulus, where the modulus of a complex number a+bi is

mod(a+bi) =
√

a2 +b2

This leads to the famous statement that “stationarity requires the roots of the

determinantal polynomial to lie inside the complex unit circle.” draw picture

here.

• When there are roots on the unit circle (unit roots) or outside the unit circle, we

leave the world of stationary processes.

• Dynamic multipliers: ∂yt+ j/∂εt = F j
(1,1) is a dynamic multiplier or an impulse-

response function. Real eigenvalues lead to steady movements, whereas comlpex
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eigenvalue lead to ocillatory behavior. Of course, when there are multiple eigen-

values the overall effect can be a mixture. pictures

Invertibility of AR process To begin with, define the lag operator L

Lyt = yt−1

The lag operator is defined to behave just as an algebraic quantity, e.g.,

L2yt = L(Lyt)

= Lyt−1

= yt−2

or

(1−L)(1+L)yt = 1−Lyt +Lyt −L2yt

= 1− yt−2

A mean-zero AR(p) process can be written as

yt −φ1yt−1 −φ2yt−2 −·· ·−φpyt−p = εt

or

yt(1−φ1L−φ2L2 −·· ·−φpLp) = εt
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Factor this polynomial as

1−φ1L−φ2L2 −·· ·−φpLp = (1−λ1L)(1−λ2L) · · ·(1−λpL)

For the moment, just assume that the λi are coefficients to be determined. Since L is

defined to operate as an algebraic quantitiy, determination of the λi is the same as

determination of the λi such that the following two expressions are the same for all z :

1−φ1z−φ2z2 −·· ·−φpzp = (1−λ1z)(1−λ2z) · · ·(1−λpz)

Multiply both sides by z−p

z−p−φ1z1−p −φ2z2−p −·· ·φp−1z−1 −φp = (z−1 −λ1)(z
−1 −λ2) · · ·(z−1 −λp)

and now define λ = z−1 so we get

λp −φ1λp−1 −φ2λp−2 −·· ·−φp−1λ−φp = (λ−λ1)(λ−λ2) · · ·(λ−λp)

The LHS is precisely the determinantal polynomial that gives the eigenvalues of F.

Therefore, the λi that are the coefficients of the factorization are simply the eigenvalues

of the matrix F.

Now consider a different stationary process

(1−φL)yt = εt

• Stationarity, as above, implies that |φ| < 1.
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Multiply both sides by 1+φL+φ2L2 + ...+φ jL j to get

(
1+φL+φ2L2 + ...+φ jL j)(1−φL)yt =

(
1+φL+φ2L2 + ...+φ jL j)εt

or, multiplying the polynomials on th LHS, we get

(
1+φL+φ2L2 + ...+φ jL j −φL−φ2L2 − ...−φ jL j −φ j+1L j+1

)
yt

==
(
1+φL+φ2L2 + ...+φ jL j

)
εt

and with cancellations we have

(
1−φ j+1L j+1)yt =

(
1+φL+φ2L2 + ...+φ jL j)εt

so

yt = φ j+1L j+1yt +
(
1+φL+φ2L2 + ...+φ jL j)εt

Now as j → ∞, φ j+1L j+1yt → 0, since |φ| < 1, so

yt
∼=
(
1+φL+φ2L2 + ...+φ jL j)εt

and the approximation becomes better and better as j increases. However, we started

with

(1−φL)yt = εt

Substituting this into the above equation we have

yt
∼=
(
1+φL+φ2L2 + ...+φ jL j)(1−φL)yt
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so
(
1+φL+φ2L2 + ...+φ jL j)(1−φL) ∼= 1

and the approximation becomes arbitrarily good as j increases arbitrarily. Therefore,

for |φ| < 1, define

(1−φL)−1 =
∞

∑
j=0

φ jL j

Recall that our mean zero AR(p) process

yt(1−φ1L−φ2L2 −·· ·−φpLp) = εt

can be written using the factorization

yt(1−λ1L)(1−λ2L) · · ·(1−λpL) = εt

where the λ are the eigenvalues of F, and given stationarity, all the |λi|< 1. Therefore,

we can invert each first order polynomial on the LHS to get

yt =

(
∞

∑
j=0

λ j
1L j

)(
∞

∑
j=0

λ j
2L j

)
· · ·
(

∞

∑
j=0

λ j
pL j

)
εt

The RHS is a product of infinite-order polynomials in L, which can be represented as

yt = (1+ψ1L+ψ2L2 + · · ·)εt

where the ψi are real-valued and absolutely summable.

• The ψi are formed of products of powers of the λi, which are in turn functions

of the φi.

• The ψi are real-valued because any complex-valued λi always occur in conju-
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gate pairs. This means that if a + bi is an eigenvalue of F, then so is a− bi. In

multiplication

(a+bi)(a−bi) = a2 −abi+abi−b2i2

= a2 +b2

which is real-valued.

• This shows that an AR(p) process is representable as an infinite-order MA(q)

process.

• Recall before that by recursive substitution, an AR(p) process can be written as

Yt+ j =C+FC+· · ·+F jC+F j+1Yt−1 +F jEt +F j−1Et+1 +· · ·+FEt+ j−1+Et+ j

If the process is mean zero, then everything with a C drops out. Take this and

lag it by j periods to get

Yt = F j+1Yt− j−1 +F jEt− j +F j−1Et− j+1 + · · ·+FEt−1 +Et

As j → ∞, the lagged Y on the RHS drops out. The Et−s are vectors of zeros

except for their first element, so we see that the first equation here, in the limit,

is just

yt =
∞

∑
j=0

(
F j)

1,1 εt− j

which makes explicit the relationship between the ψi and the φi (and the λi as

well, recalling the previous factorization of F j).
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Moments of AR(p) process The AR(p) process is

yt = c+φ1yt−1 +φ2yt−2 + · · ·+φpyt−p + εt

Assuming stationarity, E(yt) = µ,∀t, so

µ = c+φ1µ+φ2µ+ ...+φpµ

so

µ =
c

1−φ1 −φ2 − ...−φp

and

c = µ−φ1µ− ...−φpµ

so

yt −µ = µ−φ1µ− ...−φpµ+φ1yt−1 +φ2yt−2 + · · ·+φpyt−p + εt −µ

= φ1(yt−1 −µ)+φ2(yt−2 −µ)+ ...+φp(yt−p −µ)+ εt

With this, the second moments are easy to find: The variance is

γ0 = φ1γ1 +φ2γ2 + ...+φpγp +σ2

The autocovariances of orders j ≥ 1 follow the rule

γ j = E
[
(yt −µ)

(
yt− j −µ)

)]

= E
[
(φ1(yt−1 −µ)+φ2(yt−2 −µ)+ ...+φp(yt−p −µ)+ εt)

(
yt− j −µ

)]

= φ1γ j−1 +φ2γ j−2 + ...+φpγ j−p
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Using the fact that γ− j = γ j, one can take the p+1 equations for j = 0,1, ..., p, which

have p+1 unknowns (σ2, γ0,γ1, ...,γp) and solve for the unknowns. With these, the γ j

for j > p can be solved for recursively.

13.2.3 Invertibility of MA(q) process

An MA(q) can be written as

yt −µ = (1+θ1L+ ...+θqLq)εt

As before, the polynomial on the RHS can be factored as

(1+θ1L+ ...+θqLq) = (1−η1L)(1−η2L)...(1−ηqL)

and each of the (1−ηiL) can be inverted as long as |ηi| < 1. If this is the case, then

we can write

(1+θ1L+ ...+θqLq)−1(yt −µ) = εt

where

(1+θ1L+ ...+θqLq)−1

will be an infinite-order polynomial in L, so we get

∞

∑
j=0

−δ jL
j(yt− j −µ) = εt

with δ0 = −1, or

(yt −µ)−δ1(yt−1 −µ)−δ2(yt−2 −µ)+ ... = εt
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or

yt = c+δ1yt−1 +δ2yt−2 + ...+ εt

where

c = µ+δ1µ+δ2µ+ ...

So we see that an MA(q) has an infinite AR representation, as long as the |ηi| < 1,

i = 1,2, ...,q.

• It turns out that one can always manipulate the parameters of an MA(q) process

to find an invertible representation. For example, the two MA(1) processes

yt −µ = (1−θL)εt

and

y∗t −µ = (1−θ−1L)ε∗t

have exactly the same moments if

σ2
ε∗ = σ2

εθ2

For example, we’ve seen that

γ0 = σ2(1+θ2).

Given the above relationships amongst the parameters,

γ∗0 = σ2
εθ2(1+θ−2) = σ2(1+θ2)

so the variances are the same. It turns out that all the autocovariances will be the

220



same, as is easily checked. This means that the two MA processes are observa-

tionally equivalent. As before, it’s impossible to distinguish between observa-

tionally equivalent processes on the basis of data.

• For a given MA(q) process, it’s always possible to manipulate the parameters to

find an invertible representation (which is unique).

• It’s important to find an invertible representation, since it’s the only representa-

tion that allows one to represent εt as a function of past y′s. The other represen-

tations express

• Why is invertibility important? The most important reason is that it provides a

justification for the use of parsimonious models. Since an AR(1) process has an

MA(∞) representation, one can reverse the argument and note that at least some

MA(∞) processes have an AR(1) representation. At the time of estimation, it’s a

lot easier to estimate the single AR(1) coefficient rather than the infinite number

of coefficients associated with the MA representation.

• This is the reason that ARMA models are popular. Combining low-order AR

and MA models can usually offer a satisfactory representation of univariate time

series data with a reasonable number of parameters.

• Stationarity and invertibility of ARMA models is similar to what we’ve seen -

we won’t go into the details. Likewise, calculating moments is similar.

Exercise 28 Calculate the autocovariances of an ARMA(1,1) model: (1 + φL)yt =

c+(1+θL)εt
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14 Introduction to the second half

We’ll begin with study of extremum estimators in general. Let Zn be the available data,

based on a sample of size n.

Definition 29 [Extremum estimator] An extremum estimator θ̂ is the optimizing ele-

ment of an objective function sn(Zn,θ) over a set Θ.

We’ll write the objective function suppressing the dependence on Zn.

Example 30 Least squares, linear model

Let the d.g.p. be yt = x′tθ0 +εt,t = 1,2, ...,n, θ0 ∈ Θ. Stacking observations verti-

cally, yn = Xnθ0 +εn, where Xn =

(
x1 x2 · · · xn

)′
. The least squares estimator

is defined as

θ̂ ≡ argmin
Θ

sn(θ) = 1/n [yn −Xnθ]′ [yn −Xnθ]

We readily find that θ̂ = (X′X)−1X′y.

Example 31 Maximum likelihood

Suppose that the continuous random variable yt ∼ IIN(θ0,1). The maximum like-

lihood estimator is defined as

θ̂ ≡ argmax
Θ

Ln(θ) =
n

∏
t=1

(2π)−1/2 exp

(
−(yt −θ)2

2

)

Because the logarithmic function is strictly increasing on (0,∞), maximization of the

average logarithm of the likelihood function is achieved at the same θ̂ as for the likeli-

hood function:

θ̂ ≡ argmax
Θ

sn(θ) = 1/n lnLn(θ) = −1/2ln2π−1/n
n

∑
t=1

(yt −θ)2

2
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Solution of the f.o.c. leads to the familiar result that θ̂ = ȳ.

• MLE estimators are asymptotically efficient (Cramér-Rao theorem), supposing

the strong distributional assumptions upon which they are based are true.

• One can investigate the properties of an “ML” estimator supposing that the dis-

tributional assumptions are incorrect. This gives a quasi-ML estimator, which

we’ll study later.

• The strong distributional assumptions of MLE may be questionable in many

cases. It is possible to estimate using weaker distributional assumptions based

only on some of the moments of a random variable(s).

Example 32 Method of moments

Suppose we draw a random sample of yt from the χ2(θ0) distribution. Here, θ0 is

the parameter of interest. The first moment (expectation), µ1, of a random variable will

in general be a function of the parameters of the distribution, i.e., µ1(θ0) .

• µ1 = µ1(θ0) is a moment-parameter equation.

• In this example, the relationship is the identity function µ1(θ0) = θ0, though in

general the relationship may be more complicated. The sample first moment is

µ̂1 =
n

∑
t=1

yt/n.

• Define

m1(θ) = µ1(θ)− µ̂1

• The method of moments principle is to choose the estimator of the parameter

to set the estimate of the population moment equal to the sample moment, i.e.,

m1(θ̂) ≡ 0.
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In this case,

m1(θ̂) = θ̂−
n

∑
t=1

yt/n = 0.

Since ∑n
t=1 yt/n

p→ θ0 by the WLLN, the estimator is consistent.

Example 33 Method of moments, continued.

Continuing with the above example, the variance of a χ2(θ0) r.v. is

V (yt) = E
(
yt −θ0)2

= 2θ0.

• Define

m2(θ) = 2θ− ∑n
t=1 (yt − ȳ)2

n

• The MM estimator would set

m2(θ̂) = 2θ̂− ∑n
t=1 (yt − ȳ)2

n
≡ 0,

so,

θ̂ =
∑n

t=1 (yt − ȳ)2

2n
.

Again, since, by the WLLN, the sample variance is consistent for the true vari-

ance, that is,

∑n
t=1 (yt − ȳ)2

n
p→ 2θ0

the MM estimator is consistent.

Example 34 Generalized method of moments (GMM)

The previous two examples give two estimators of θ0 which are both consistent.

With a given sample, the estimators will be different in general.
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• With two moment-parameter equations and only one parameter, we have overi-

dentification, which means that we have more information than is strictly neces-

sary for consistent estimation of the parameter.

• The GMM combines information from the two moment-parameter equations

to form a new estimator which will be more efficient, in general (proof of this

below).

From the first example, define m1t(θ) = θ − yt . We already have that m1(θ) is the

sample average of m1t(θ), i.e.,

m1(θ) = 1/n
n

∑
t=1

m1t(θ)

= θ−
n

∑
t=1

yt/n.

Clearly, when evaluated at the true parameter value θ0, both E
[
m1t(θ0)

]
= 0 and

E
[
m1(θ0)

]
= 0.

From the second example we define additional moment conditions

m2t(θ) = 2θ− (yt − ȳ)2

and

m2(θ) = 2θ− ∑n
t=1 (yt − ȳ)2

n
.

Again, it is clear from the SLLN that m2(θ0)
a.s.→ 0. The MM estimator would chose θ̂

to set either m1(θ̂) = 0 or m2(θ̂) = 0. In general, no single value of θ will solve the two

equations simultaneously.

• The GMM estimator is based on defining a measure of distance d(m(θ)), where
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m(θ) = (m1(θ),m2(θ))′ , and choosing

θ̂ = argmin
Θ

sn(θ) = d (m(θ)) .

An example would be to choose d(m) = m′Am, where A is a positive definite ma-

trix. While it’s clear that the MM gives consistent estimates if there is a one-to-one

relationship between parameters and moments, it’s not immediately obvious that the

GMM estimator is consistent. (We’ll see later that it is.)

These examples show that these widely used estimators may all be interpreted as

the solution of an optimization problem. For this reason, the study of extremum esti-

mators is useful for its generality. We will see that the general results extend smoothly

to the more specialized results available for specific estimators. After studying ex-

tremum estimators in general, we will study the GMM estimator, then QML and NLS.

The reason we study GMM first is that LS, IV, NLS, MLE, QML and other well-known

parametric estimators may all be interpreted as special cases of the GMM estimator,

so the general results on GMM can simplify and unify the treatment of these other

estimators. Nevertheless, there are some special results on QML and NLS, and both

are important in empirical research, which makes focus on them useful.

One of the focal points of the course will be nonlinear models. This is not to

suggest that linear models aren’t useful. Linear models are more general than they

might first appear, since one can employ nonlinear transformations of the variables:

ϕ0(yt) =

[
ϕ1(xt) ϕ2(xt) · · · ϕp(xt)

]
θ0 + εt

For example,

lnyt = α+βx1t + γx2
1t +δx1tx2t + εt
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fits this form.

• The important point is that ϕ0(yt) is linear in the parameters but not necessarily

linear in the variables.

In spite of this generality, situations often arise which simply can not be convincingly

represented by linear in the parameters models.

Example 35 Expenditure shares

Roy’s Identity states that the quantity demanded of the ith of G goods is

xi =
−∂v(p,y)/∂pi

∂v(p,y)/∂y
.

An expenditure share is

si ≡ pixi/y,

so necessarily si ∈ [0,1], and ∑G
i=1 si = 1.

No linear in the parameters model for xi or si with a parameter space that is defined

independent of the data can guarantee that either of these conditions holds. These

constraints will often be violated by estimated linear models, which calls into question

their appropriateness in cases of this sort.

Example 36 Binary limited dependent variable

Suppose there is a latent process

y∗ = x′β0

but that y∗ is not observed. Rather we observe

y = 1
[
x′β0 < ε

]
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so that y is either 0 or 1. In this case, we can write

y = Fε(x′β0)+η

E(η) = 0.

One could estimate this by (nonlinear) least squares

β̂ = argmin
1
n ∑

t

(
y−Fε(x′β)

)2

The main point is that it is impossible that Fε(x′β0) can be written as a linear in the

parameters model, in the sense that there are no θ,ϕ(x) such that

Fε(x′β0) = ϕ(x)′θ,∀x

where ϕ(x) is a p-vector valued function of the vector x. This is because for any x, we

can always find a θ that is such that ϕ(x)′θ will be negative or greater than 1, which is

illogical.

Since this sort of problem occurs often in empirical work, it is useful to study NLS

and other nonlinear models.

After discussing these estimation methods for parametric models we’ll briefly in-

troduce nonparametric estimation methods. These methods allow one, for example, to

estimate f (xt) consistently when we are not willing to assume that a model of the form

yt = f (xt)+ εt
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can be restricted to a parametric form

yt = f (xt ,θ)+ εt

Pr(εt < z) = Fε(z|φ,xt)

θ ∈ Θ,φ ∈ Φ

where f (·) and perhaps Fε(z|φ,xt) are of known functional form. This is important

since economic theory gives us general information about functions and the signs of

their derivatives, but not about their specific form.

The final section deals with simulation methods in econometrics. These methods

allow us to substitute computer power for mental power. Since computer power is

becoming relatively cheap compared to mental effort, any econometrician who lives

by the principles of economic theory should be interested in these techniques.
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15 Notation and review

• All vectors will be column vectors, unless they have a transpose symbol (or I for-

get to apply this rule - your help catching typos and er0rors is much appreciated).

For example, if xt is a p×1 vector, x′t is a 1× p vector.

15.1 Notation for differentiation of vectors and matrices

Readings: Gallant, Ch. 1, pp. 8-16.

Let s(·) : ℜp → ℜ be a real valued function of the p× 1 vector θ. Then ∂s(θ)
∂θ is

organized as a p×1 vector,

∂s(θ)

∂θ
=




∂s(θ)
∂θ1

∂s(θ)
∂θ2

...

∂s(θ)
∂θp




Following this convention, ∂s(θ)
∂θ′ is a 1× p vector, and ∂2s(θ)

∂θ∂θ′ is a p× p matrix. Note that

∂2s(θ)

∂θ∂θ′
=

∂
∂θ

(
∂s(θ)

∂θ′

)
=

∂
∂θ′

(
∂s(θ)

∂θ

)
.

Let f (θ):ℜp → ℜn be a n-vector valued function of the p-vector θ. Let f (θ)′ be

the 1×n valued transpose of f . Then
(

∂
∂θ f (θ)′

)′
= ∂

∂θ′ f (θ).

• Product rule: Let f (θ):ℜp → ℜn and h(θ):ℜp → ℜn be n-vector valued func-

tions of the p-vector θ. Then

∂
∂θ′

h(θ)′ f (θ) = h′
(

∂
∂θ′

f

)
+ f ′

(
∂

∂θ′
h

)

has dimension 1× p. Applying the transposition rule we get
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∂
∂θ

h(θ)′ f (θ) =

(
∂

∂θ
f ′
)

h+

(
∂

∂θ
h′
)

f

which has dimension p×1.

• Chain Rule: Let f (·):ℜp → ℜn a n-vector valued function of a p-vector argu-

ment, and let g():ℜr → ℜp be a p-vector valued function of an r-vector valued

argument ρ. Then

∂
∂ρ′ f [g(ρ)] =

∂
∂θ′

f (θ)

∣∣∣∣
θ=g(ρ)

∂
∂ρ′g(ρ)

has dimension n× r.

15.2 Convergenge modes

Readings: Davidson and MacKinnon, Ch. 4∗; Amemiya Ch. 3; Hamilton Ch. 7;

Davidson (1994) is a good advanced reference.

We will consider several modes of convergence. The first three modes discussed

are simply for background. The stochastic modes are those which will be used later in

the course.

Definition 37 A sequence is a mapping from the natural numbers {1,2, ...}= {n}∞
n=1 =

{n} to some other set, so that the set is ordered according to the natural numbers as-

sociated with its elements.

Real-valued sequences:

Definition 38 [Convergence] A real-valued sequence of vectors {an} converges to the

vector a if for any ε > 0 there exists an integer Nε such that for all n > Nε,‖ an−a ‖< ε

. a is the limit of an, written an → a.
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Deterministic real-valued functions

Consider a sequence of functions { fn(w)} where

fn : Ω → T ⊆ ℜ.

Ω may be an arbitrary set.

Definition 39 [Pointwise convergence] A sequence of functions { fn(w)} converges

pointwise on Ω to the function f (ω) if for all ε > 0 and ω ∈ Ω there exists an integer

Nεω such that

| fn(w)− f (ω)| < ε,∀n > Nεω.

It’s important to note that Nεω depends upon ω, so that converge may be much

more rapid for certain ω than for others. Uniform convergence requires a similar rate

of convergence throughout Ω.

Definition 40 [Uniform convergence] A sequence of functions { fn(w)} converges uni-

formly on Ω to the function f (ω) if for any ε > 0 there exists an integer N such that

sup
ω∈Ω

| fn(w)− f (ω)| < ε,∀n > N.

(insert a diagram here showing the envelope around f (ω) in which fn(ω) must lie)

Stochastic sequences

In econometrics, we typically deal with stochastic sequences. Given a probability

space (Ω,F ,P) , recall that a random variable maps the sample space to the real

line, i.e., X(ω) : Ω → ℜ. A sequence of random variables {Xn(ω)} is a collection
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of such mappings, i.e., each Xn(ω) is a random variable with respect to the probabil-

ity space (Ω,F ,P) . For example, given the model Y = Xβ0 + ε, the OLS estimator

β̂n = (X ′X)−1 X ′Y, where n is the sample size, can be used to form a sequence of ran-

dom vectors {β̂n}. A number of modes of convergence are in use when dealing with

sequences of random variables. Several such modes of convergence should already be

familiar:

Definition 41 [Convergence in probability] Let Xn(ω) be a sequence of random vari-

ables, and let X(ω) be a random variable. Let An = {ω : |Xn(ω)−X(ω)| > ε}. Then

{Xn(ω)} converges in probability to X(ω) if

lim
n→∞

P(An) = 0,∀ε > 0.

Convergence in probability is written as Xn
p→ X , or plim Xn = X .

Definition 42 [Almost sure convergence] Let Xn(ω) be a sequence of random vari-

ables, and let X(ω) be a random variable. Let A = {ω : limn→∞ Xn(ω) = X(ω)}. Then

{Xn(ω)} converges almost surely to X(ω) if

P(A) = 1.

In other words, Xn(ω) → X(ω) (ordinary convergence of the two functions) except on

a set C = Ω−A such that P(C) = 0. Almost sure convergence is written as Xn
a.s.→ X ,

or Xn → X ,a.s. One can show that

Xn
a.s.→ X ⇒ Xn

p→ X .

Definition 43 [Convergence in distribution] Let the r.v. Xn have distribution function
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Fn and the r.v. Xn have distribution function F. If Fn → F at every continuity point of

F, then Xn converges in distribution to X .

Convergence in distribution is written as Xn
d→ X . It can be shown that convergence in

probability implies convergence in distribution.

Stochastic functions

Simple laws of large numbers (LLN’s) allow us to directly conclude that β̂n
a.s.→ β0 in

the OLS example, since

β̂n = β0 +

(
X ′X

n

)−1(X ′ε
n

)
,

and X ′ε
n

a.s.
→ 0 by a SLLN. Note that this term is not a function of the parameter β.

This easy proof is a result of the linearity of the model, which allows us to express

the estimator in a way that separates parameters from random functions. In general,

this is not possible. We often deal with the more complicated situation where the

stochastic sequence depends on parameters in a manner that is not reducible to a simple

sequence of random variables. In this case, we have a sequence of random functions

that depend on θ: {Xn(ω,θ)}, where each Xn(ω,θ) is a random variable with respect to

a probability space (Ω,F ,P) and the parameter θ belongs to a parameter space θ ∈ Θ.

Definition 44 [Uniform almost sure convergence] {Xn(ω,θ)} converges uniformly al-

most surely in Θ to X(ω,θ) if

lim
n→∞

sup
θ∈Θ

|Xn(ω,θ)−X(ω,θ)|= 0, (a.s.)

Implicit is the assumption that all Xn(ω,θ) and X(ω,θ) are random variables w.r.t.

(Ω,F ,P) for all θ ∈ Θ. We’ll indicate uniform almost sure convergence by
u.a.s.→ and

234



uniform convergence in probability by
u.p.→ .

• An equivalent definition, based on the fact that “almost sure” means “with prob-

ability one” is

Pr

(
lim
n→∞

sup
θ∈Θ

|Xn(ω,θ)−X(ω,θ)|= 0

)
= 1

This has a form similar to that of the definition of a.s. convergence - the essential

difference is the addition of the sup.

15.3 Rates of convergence and asymptotic equality

It’s often useful to have notation for the relative magnitudes of quantities. Quantities

that are small relative to others can often be ignored, which simplifies analysis.

Definition 45 [Little-o] Let f (n) and g(n) be two real-valued functions. The notation

f (n) = o(g(n)) means limn→∞
f (n)
g(n) = 0.

Definition 46 [Big-O] Let f (n) and g(n) be two real-valued functions. The notation

f (n) = O(g(n)) means there exists some N such that for n > N,
∣∣∣ f (n)

g(n)

∣∣∣< K, where K is

a finite constant.

This definition doesn’t require that f (n)
g(n) have a limit (it may fluctuate boundedly).

If { fn} and {gn} are sequences of random variables analogous definitions are

Definition 47 The notation f (n) = op(g(n)) means f (n)
g(n)

p→ 0.

Example 48 The least squares estimator θ̂ = (X ′X)−1X ′Y = (X ′X)−1X ′ (Xθ0 + ε
)

=

θ0 + (X ′X)−1X ′ε. Since plim (X ′X)−1X ′ε
1 = 0, we can write (X ′X)−1X ′ε = op(1) and

θ̂ = θ0 + op(1). Asymptotically, the term op(1) is negligible. This is just a way of

indicating that the LS estimator is consistent.
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Definition 49 The notation f (n) = Op(g(n)) means there exists some Nε such that for

ε > 0 and all n > Nε,

P

(∣∣∣∣
f (n)

g(n)

∣∣∣∣< Kε

)
> 1− ε,

where Kε is a finite constant.

Example 50 If Xn ∼ N(0,1) then Xn = Op(1), since, given ε, there is always some Kε

such that P(|Xn| < Kε) > 1− ε.

Useful rules:

• Op(np)Op(nq) = Op(np+q)

• op(np)op(nq) = op(np+q)

Example 51 Consider a random sample of iid r.v.’s with mean 0 and variance σ2.

The estimator of the mean θ̂ = 1/n∑n
i=1 xi is asymptotically normally distributed, e.g.,

n1/2θ̂ A∼ N(0,σ2). So n1/2θ̂ = Op(1), so θ̂ = Op(n−1/2). Before we had θ̂ = op(1), now

we have have the stronger result that relates the rate of convergence to the sample size.

Example 52 Now consider a random sample of iid r.v.’s with mean µ and variance σ2.

The estimator of the mean θ̂ = 1/n∑n
i=1 xi is asymptotically normally distributed, e.g.,

n1/2
(
θ̂−µ

) A∼ N(0,σ2). So n1/2
(
θ̂−µ

)
= Op(1), so θ̂−µ = Op(n−1/2), so θ̂ = Op(1).

These two examples show that averages of centered (mean zero) quantities typi-

cally have plim 0, while averages of uncentered quantities have finite nonzero plims.

Note that the definition of Op does not mean that f (n) and g(n) are of the same order.

Asymptotic equality ensures that this is the case.

Definition 53 Two sequences of random variables { fn} and {gn} are asymptotically

equal (written fn
a
= gn) if

plim

(
f (n)

g(n)

)
= 1
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Finally, analogous almost sure versions of op and Op are defined in the obvious

way.
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16 Asymptotic properties of extremum estimators

Readings: Gourieroux and Monfort (1995), Vol. 2, Ch. 24∗; Amemiya, Ch. 4 section

4.1∗; Davidson and MacKinnon, pp. 591-96; Gallant, Ch. 3; Newey and McFadden

(1994), “Large Sample Estimation and Hypothesis Testing,” in Handbook of Econo-

metrics, Vol. 4, Ch. 36.

16.1 Extremum estimators

In Definition 29 we defined an extremum estimator θ̂ as the optimizing element of an

objective function sn(θ) over a set Θ. Let the objective function sn(Zn,θ) depend upon

a n× p random matrix Zn =

[
z1 z2 · · · zn

]′
where the zt are p-vectors and p is

finite.

Example 54 Given the model yi = x′iθ + εi, with n observations, define zi = (yi,x′i)
′.

The OLS estimator minimizes

sn(Zn,θ) = 1/n
n

∑
i=1

(
yi − x′iθ

)2

= 1/n ‖ Y −Xθ ‖2

where Y and X are defined similarly to Z.

16.2 Consistency

The following theorem is patterned on a proof in Gallant (1987) (the article, ref. later),

which we’ll see in its original form later in the course. It is interesting to compare

the following proof with Amemiya’s Theorem 4.1.1, which is done in terms of conver-

gence in probability.
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Theorem 55 [Consistency of e.e.] Suppose that θ̂n is obtained by maximizing sn(θ)

over Θ.

Assume

1. Compactness: The parameter space Θ is an open subset of Euclidean space ℜK.

The closure of Θ, Θ is compact.

2. Uniform Convergence: There is a nonstochastic function s∞(θ) that is continu-

ous in θ on Θ such that

lim
n→∞

sup
θ∈Θ

|sn(θ)− s∞(θ)| = 0,a.s.

3. Identification: s∞(·) has a unique global maximum at θ0 ∈ Θ, i.e., s∞(θ0) >

s∞(θ), ∀θ 6= θ0,θ ∈ Θ

Then θ̂n
a.s.→ θ0.

Proof: Select a ω ∈ Ω and hold it fixed. Then {sn(ω,θ)} is a fixed sequence of

functions. Suppose that ω is such that sn(θ) converges uniformly to s∞(θ). This hap-

pens with probability one by assumption (b). The sequence {θ̂n} lies in the compact set

Θ, by assumption (1) and the fact that maximixation is over Θ. Since every sequence

from a compact set has at least one limit point (Davidson, Thm. 2.12), say that θ̂ is

a limit point of {θ̂n}. There is a subsequence {θ̂nm}({nm} is simply a sequence of in-

creasing integers) with limm→∞ θ̂nm = θ̂ (for example, set each element of the sequence

to θ̂). By uniform convergence and continuity

lim
m→∞

snm(θ̂nm) = s∞(θ̂),a.s.
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To see this, first of all, select an element θ̂t from the sequence
{

θ̂nm

}
. Then uniform

convergence implies

lim
m→∞

snm(θ̂t) = s∞(θ̂t),a.s.

Continuity of s∞ (·) implies that

lim
t→∞

s∞(θ̂t) = s∞(θ̂)

since the limit as t → ∞ of
{

θ̂t
}

is θ̂. So the above claim is true.

Next, by maximization

snm(θ̂nm) ≥ snm(θ0)

which holds in the limit, so

lim
m→∞

snm(θ̂nm) ≥ lim
m→∞

snm(θ0).

However,

lim
m→∞

snm(θ̂nm) = s∞(θ̂),

as seen above, and

lim
m→∞

snm(θ0) = s∞(θ0)

by uniform convergence, so

s∞(θ̂) ≥ s∞(θ0),a.s.

But by assumption (3), there is a unique global maximum of s∞(θ) at θ0, so we must

have s∞(θ̂) = s∞(θ0), a.s. , and θ̂ = θ0, a.s. Therefore {θ̂n} has only one limit point,

θ0, except on a set C ⊂ Ω with P(C) = 0.

Discussion of the proof:
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• This proof relies on the identification assumption of a unique global maximum

at θ0. An equivalent way to state this is

(c) Identification: Any point θ in Θ with s∞(θ) ≥ s∞(θ0) must have ‖ θ− θ0 ‖= 0,

which matches the way we will write the assumption in the section on nonparametric

inference.

• We assume that θ̂n is in fact a global maximum of sn (θ) . It is not required to be

unique for n finite, though the identification assumption requires that the limiting

objective function have a unique maximizing argument. The next section on nu-

meric optimization methods will show that actually finding the global maximum

of sn (θ) may be a non-trivial problem.

• See Amemiya’s Example 4.1.4 for a case where discontinuity leads to break-

down of consistency.

• The assumption that θ0 is in the interior of Θ (part of the identification assump-

tion) has not been used to prove consistency, so we could directly assume that

θ0 is simply an element of a compact set Θ. The reason that we assume it’s in

the interior here is that this is necessary for subsequent proof of asymptotic nor-

mality, and I’d like to maintain a minimal set of simple assumptions, for clarity.

Parameters on the boundary of the parameter set cause theoretical difficulties

that we will not deal with in this course. Just note that conventional hypothesis

testing methods do not apply in this case.

• Note that sn (θ) is not required to be continuous, though s∞(θ) is.

• The following figures illustrate why uniform convergence is important.
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With uniform convergence, the maximum of the sample
objective function eventually must be in the neighborhood
of the maximum of the limiting objective function

With pointwise convergence, the sample objective function
may have its maximum far away from that of the limiting
objective function

16.3 Example: Consistency of Least Squares

We suppose that data is generated by random sampling of (y,w), where yt = α0 +β0wt

+εt . (wt ,εt) has the common distribution function µwµε (w and ε are independent) with
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support W ×E . Suppose that the variances σ2
w and σ2

ε are finite. Let θ0 = (α0,β0)′ ∈

Θ, for which Θ is compact. Let xt = (1,wt)
′, so we can write yt = x′tθ0 +εt . The sample

objective function for a sample size n is

sn(θ) = 1/n
n

∑
t=1

(
yt − x′tθ

)2
= 1/n

n

∑
i=1

(
x′tθ

0 + εt − x′tθ
)2

= 1/n
n

∑
t=1

(
x′t
(
θ0 −θ

))2
+2/n

n

∑
t=1

x′t
(
θ0 −θ

)
εt +1/n

n

∑
t=1

ε2
t

Considering the last term, by the SLLN,

1/n
n

∑
t=1

ε2
t

a.s.→
�

W

�
E

ε2dµW dµE = σ2
ε.

This is completely unaffected by θ, so the pointwise almost sure convergence is also

uniform. The same argument holds for the second term since E(ε) = 0 and w and ε are

independent. Finally, for the first term, for a given θ

1/n
n

∑
t=1

(
x′t
(
θ0 −θ

))2 a.s.→
�

W

(
x′
(
θ0 −θ

))2
dµW (16)

=
(
α0 −α

)2
+2
(
α0 −α

)(
β0 −β

) �
W

wdµW +
(
β0 −β

)2
�

W
w2dµW

=
(
α0 −α

)2
+2
(
α0 −α

)(
β0 −β

)
E(w)+

(
β0 −β

)2
E
(
w2)

This convergence is also uniform, by the previous argument (that is, the expectations

are not functions of parameters). So

s∞(θ) =
(
α0 −α

)2
+2
(
α0 −α

)(
β0 −β

)
E(w)+

(
β0 −β

)2
E
(
w2)+σ2

ε

A minimizer of this is clearly α = α0,β = β0.

Exercise 56 Show that in order for the above solution to be unique it is necessary

243



that E(w2) 6= 0. Discuss the relationship between this condition and the problem of

colinearity of regressors.

This example shows that Theorem 55 can be used to prove strong consistency of

the OLS estimator. There are easier ways to show this, of course - this is only an

example of application of the theorem. Also, the way we moved from
a.s.→ to

u.a.s.→

is a special case that relies on being able to neatly separate parameters and random

variables. This won’t always work. For this reason, we need a uniform strong law of

large numbers in order to verify assumption (2) of Theorem 55. The following theorem

is from Davidson, pg. 337.

Theorem 57 [Uniform Strong LLN] Let {Gn(θ)} be a sequence of stochastic real-

valued functions on a totally-bounded metric space (Θ,ρ). Then

sup
θ∈Θ

|Gn(θ)| a.s.→ 0

if and only if

(a) Gn(θ)
a.s.→ 0 for each θ ∈ Θ0, where Θ0 is a dense subset of Θ and

(b) {Gn(θ)} is strongly stochastically equicontinuous..

• Assumption (a) is simply pointwise almost sure convergence.

• For present purposes, just take Θ0 = Θ, so don’t worry about “dense.”

• The metric space we are interested in now is simply Θ⊂ℜK , using the Euclidean

norm.

• What is required is pointwise almost sure convergence and strong stochastic

equicontinuity. Pointwise almost sure convergence comes from one of the usual

SLLN’s.
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Strong stochastic equicontinuity requires that for ∀ε > 0,∃δ > 0 such that

Pr

(
lim
n→∞

sup
θ∈Θ

sup
θ′∈S(θ,δ)

∣∣Gn(θ)−Gn(θ′)
∣∣> ε

)
= 0

Here, S(θ,δ) is a δ− neighborhood of θ, i.e., S(θ,δ) = {θ∗ : ρ(θ∗,θ) < δ}.

This definition is basically requiring uniform continuity throughout Θ, with prob-

ability one as n → ∞.

• A stronger condition that implies this one is: Gn(θ) is uniformly continuous in

θ for all n, and also bounded for all n (w.p.1).

• Strong stochastic equicontinuity is basically a probabilistic, asymptotic version

of uniform continuity.

• Note: a function that is continuous on a compact set is uniformly continuous.

• Taken together, these results imply that with a compact parameter space and

a continuous, bounded objective function, pointwise almost sure convergence

implies uniform almost sure convergence.

• These are reasonable conditions in many cases, and henceforth when dealing

with specific estimators we’ll simply assume that pointwise almost sure conver-

gence can be extended to uniform almost sure convergence.

• The limiting objective function can be continuous in θ even if sn(θ) is discontin-

uous, since discontinuities can be smoothed out as we take expectations over the

data. We’ll see an example in the section on estimation by simulation methods.

ADD AN EXAMPLE HERE, ref. to ANDREWS
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16.4 Asymptotic Normality

A consistent estimator is oftentimes not very useful unless we know how fast it is likely

to be converging to the true value, and the probability that it is far away from the true

value. Establishment of asymptotic normality with a known scaling factor solves these

two problems. The following theorem is similar to Amemiya’s Theorem 4.1.3 (pg.

111).

Theorem 58 [Asymptotic normality of e.e.] In addition to the assumptions of Theo-

rem 55, assume

(a) Jn(θ) ≡ D2
θsn(θ) exists and is continuous in an open, convex neighborhood of

θ0.

(b) {Jn(θn)} a.s.→ J∞(θ0), a finite negative definite matrix, for any sequence {θn}

that converges almost surely to θ0.

(c)
√

nDθsn(θ0)
d→ N

[
0,I∞(θ0)

]
, where I∞(θ0) = limn→∞Var

√
nDθsn(θ0)

Then
√

n
(
θ̂−θ0

) d→ N
[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]

Proof: By Taylor expansion:

Dθsn(θ̂n) = Dθsn(θ0)+D2
θsn(θ∗)

(
θ̂−θ0)

where θ∗ = λθ̂+(1−λ)θ0, 0 ≤ λ ≤ 1.

• Note that θ̂ will be in the neighborhood where D2
θsn(θ) exists with probability

one as n becomes large, by consistency.

• Now the l.h.s. of this equation is zero, at least asymptotically, since θ̂n is a

maximizer and the f.o.c. must hold exactly since the limiting objective function

is strictly concave in a neighborhood of θ0.
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• Also, since θ∗ is between θ̂n and θ0, and since θ̂n
a.s.→ θ0 , assumption (b) gives

D2
θsn(θ∗)

a.s.→ J∞(θ0)

So

0 = Dθsn(θ0)+
[
J∞(θ0)+op(1)

](
θ̂−θ0)

And

0 =
√

nDθsn(θ0)+
[
J∞(θ0)+op(1)

]√
n
(
θ̂−θ0)

Now J∞(θ0) is a finite negative definite matrix, so the op(1) term is asymptotically

irrelevant next to J∞(θ0), so we can write

0
a
=

√
nDθsn(θ0)+ J∞(θ0)

√
n
(
θ̂−θ0)

√
n
(
θ̂−θ0) a

= −J∞(θ0)−1√nDθsn(θ0)

Because of assumption (c), and the formula for the variance of a linear combination of

r.v.’s,
√

n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

• Assumption (b) is not implied by the Slutsky theorem. The Slutsky theorem says

that g(xn)
a.s.→ g(x) if xn → xand g(·) is continuous at x. However, the function

g(·) can’t depend on n to use this theorem. In our case Jn(θn) is a function of n.

A theorem which applies (Amemiya, Ch. 4) is

Theorem 59 If gn(θ) converges uniformly almost surely to a nonstochastic function

g∞(θ) uniformly on an open neighborhood of θ0, then gn(θ̂)
a.s.→ g∞(θ0) if g∞(θ0) is

continuous at θ0 and θ̂ a.s.→ θ0.
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• To apply this to the second derivatives, sufficient conditions would be that the

second derivatives be strongly stochastically equicontinuous on a neighborhood

of θ0, and that an ordinary LLN applies to the derivatives when evaluated at

θ ∈ N(θ0).

• Stronger conditions that imply this are as above: continuous and bounded second

derivatives in a neighborhood of θ0.

• Skip this in lecture. A note on the order of these matrices: Supposing that sn(θ)

is representable as an average of n terms, which is the case for all estimators we

consider, D2
θsn(θ) is also an average of n matrices, the elements of which are not

centered (they do not have zero expectation). Supposing a SLLN applies, the

almost sure limit of D2
θsn(θ0), J∞(θ0) = O(1), as we saw in Example 52. On the

other hand, assumption (c):
√

nDθsn(θ0)
d→ N

[
0,I∞(θ0)

]
means that

√
nDθsn(θ0) = Op(1),

where we use the result of Example 50. If we were to omit the
√

n, we’d have

Dθsn(θ0) = n−
1
2 Op(1)

= Op

(
n−

1
2

)

where we use the fact that Op(nr)Op(nq) = Op(nr+q). The sequence Dθsn(θ0)

is centered, so we need to scale by
√

n to avoid convergence to zero.
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16.5 Example: Binary response models.

Binary response models arise in a variety of contexts. The referendum contingent valu-

ation (CV) method of infering the social value of a project provides a simple example.

This example is a special case of more general discrete choice (or binary response)

models. Individuals are asked if the would pay an amount A for provision of a project.

Indirect utility in the base case (no project) is v0(m,z)+ε0, where m is income and z is

a vector of other variables such as prices, personal characteristics, etc. After provision,

utility is v1(m,z)+ ε1. The random terms εi, i = 1,2, reflect variations of preferences

in the population. With this, an individual agrees1 to pay A if

ε0 − ε1 < v1(m−A,z)− v0(m,z)

Define ε = ε0 − ε1, let w collect m and z, and let ∆v(w,A) = v1(m−A,z)− v0(m,z).

Define y = 1 if the consumer agrees to pay A for the change, y = 0 otherwise. The

probability of agreement is

Pr(y = 1) = Fε [∆v(w,A)] .

To simplify notation, define p(w,A) ≡ Fε [∆v(w,A)] . To make the example specific,

suppose that

v1(m,z) = α−βm

v0(m,z) = −βm

1We assume here that responses are truthful, that is there is no strategic behavior and that individuals
are able to order their preferences in this hypothetical situation.
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and ε0 and ε1 are i.i.d. extreme value random variables. That is, utility depends only

on income, preferences in both states are homothetic, and a specific distributional as-

sumption is made on the distribution of preferences in the population. With these as-

sumptions (the details are unimportant here, see articles by D. McFadden for details)

it can be shown that

p(A,θ) = Λ(α+βA) ,

where Λ(z) is the logistic distribution function

Λ(z) = (1+ exp(−z))−1 .

This is the simple logit model: the choice probability is the logit function of a linear in

parameters function.

Another simple example is a probit threshold-crossing model. Assume that

y∗ = x′β− ε

y = 1(y∗ > 0)

ε ∼ N(0,1)

Here, y∗ is an unobserved (latent) continuous variable, and y is a binary variable that

indicates whether y∗is negative or positive. Then Pr(y = 1) = Pr(ε < xβ) = Φ(xβ),

where

Φ(•) =

� xβ

−∞
(2π)−1/2 exp(−ε2

2
)dε

is the standard normal distribution function.

In general, a binary response model will require that the choice probability be
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parameterized in some form. For a vector of explanatory variables x, the response

probability will be parameterized in some manner

Pr(y = 1|x) = p(x,θ)

If p(x,θ) = Λ(x′θ), we have a logit model. If p(x,θ) = Φ(x′θ), where Φ(·) is the

standard normal distribution function, then we have a probit model.

Regardless of the parameterization, we are dealing with a Bernoulli density,

fYi(yi|xi) = p(xi,θ)yi(1− p(x,θ))1−yi

so as long as the observations are independent, the maximum likelihood (ML) estima-

tor, θ̂, is the maximizer of

sn(θ) =
1
n

n

∑
i=1

(yi ln p(xi,θ)+(1− yi) ln [1− p(xi,θ)])

≡ 1
n

n

∑
i=1

s(yi,xi,θ). (17)

Following the above theoretical results, θ̂ tends in probability to the θ0 that maximizes

the uniform almost sure limit of sn(θ). Noting that Eyi = p(xi,θ0), and following

a SLLN for i.i.d. processes, sn(θ) converges almost surely to the expectation of a

representative term s(y,x,θ). First one can take the expectation conditional on x to get

Ey|x {y ln p(x,θ)+(1− y) ln [1− p(x,θ)]}= p(x,θ0) ln p(x,θ)+
[
1− p(x,θ0)

]
ln [1− p(x,θ)] .

Next taking expectation over x we get the limiting objective function

s∞(θ) =
�

X

{
p(x,θ0) ln p(x,θ)+

[
1− p(x,θ0)

]
ln [1− p(x,θ)]

}
µ(x)dx, (18)
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where µ(x) is the (joint - the integral is understood to be multiple, and X is the support

of x) density function of the explanatory variables x. This is clearly continuous in θ,

as long as p(x,θ) is continuous, and if the parameter space is compact we therefore

have uniform almost sure convergence. Note that p(x,θ) is continous for the logit and

probit models, for example. The maximizing element of s∞(θ), θ∗, solves the first

order conditions

�
X

{
p(x,θ0)

p(x,θ∗)
∂

∂θ
p(x,θ∗)− 1− p(x,θ0)

1− p(x,θ∗)
∂

∂θ
p(x,θ∗)

}
µ(x)dx = 0

This is clearly solved by θ∗ = θ0. Provided the solution is unique, θ̂ is consistent.

Question: what’s needed to ensure that the solution is unique?

The asymptotic normality theorem tells us that

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1] .

In the case of i.i.d. observations I∞(θ0) = limn→∞ Var
√

nDθsn(θ0) is simply the ex-

pectation of a typical element of the outer product of the gradient.

• There’s no need to subtract the mean, since it’s zero, following the f.o.c. in the

consistency proof above and the fact that observations are i.i.d.).
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• The terms in n also drop out by the same argument:

lim
n→∞

Var
√

nDθsn(θ0) = lim
n→∞

Var
√

nDθ
1
n ∑

t
s(θ0)

= lim
n→∞

Var
1√
n

Dθ ∑
t

s(θ0)

= lim
n→∞

1
n

Var∑
t

Dθs(θ0)

= lim
n→∞

VarDθs(θ0)

= VarDθs(θ0)

So we get

I∞(θ0) = E
{

∂
∂θ

s(y,x,θ0)
∂

∂θ′
s(y,x,θ0)

}
.

Likewise,

J∞(θ0) = E ∂2

∂θ∂θ′
s(y,x,θ0).

Expectations are jointly over y and x, or equivalently, first over y conditional on x, then

over x. From above, a typical element of the objective function is

s(y,x,θ0) = y ln p(x,θ0)+(1− y) ln
[
1− p(x,θ0)

]
.

Now suppose that we are dealing with a correctly specified logit model:

p(x,θ) =
(
1+ exp(−x′θ)

)−1
.

We can simplify the above results in this case. We have that
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∂
∂θ

p(x,θ) =
(
1+ exp(−x′θ)

)−2
exp(−x′θ)x

=
(
1+ exp(−x′θ)

)−1 exp(−x′θ)

1+ exp(−x′θ)
x

= p(x,θ)(1− p(x,θ))x

=
(

p(x,θ)− p(x,θ)2)x.

So

∂
∂θ

s(y,x,θ0) =
[
y− p(x,θ0)

]
x (19)

∂2

∂θ∂θ′
s(θ0) = −

[
p(x,θ0)− p(x,θ0)2]xx′.

Taking expectations over y then x gives

I∞(θ0) =

� [
y2 −2p(x,θ0)p(x,θ0)+ p(x,θ0)2]xx′µ(x)dx (20)

=
� [

p(x,θ0)− p(x,θ0)2]xx′µ(x)dx. (21)

where we use the fact that E(y) = E(y2) = p(x,θ0). Likewise,

J∞(θ0) = −
� [

p(x,θ0)− p(x,θ0)2]xx′µ(x)dx. (22)

Note that we arrive at the expected result: the information matrix equality holds (that

is, J∞(θ0) = −I∞(θ0)). With this,

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]
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simplifies to
√

n
(
θ̂−θ0) d→ N

[
0,−J∞(θ0)−1]

which can also be expressed as

√
n
(
θ̂−θ0) d→ N

[
0,I∞(θ0)−1] .

On a final note, the logit and standard normal CDF’s are very similar - the logit dis-

tribution is a bit more fat-tailed. While coefficients will vary slightly between the two

models, functions of interest such as estimated probabilities p(x, θ̂) will be virtually

identical for the two models.

16.6 Example: Linearization of a nonlinear model

Ref. Gourieroux and Monfort, section 8.3.4. White, Intn’l Econ. Rev. 1980 is an

earlier reference.

Suppose we have a nonlinear model

yi = h(xi,θ0)+ εi

where

εi ∼ iid(0,σ2)

The nonlinear least squares estimator solves

θ̂n = argmin
1
n

n

∑
i=1

(yi −h(xi,θ))2

We’ll study this more later, but for now it is clear that the foc for minimization will

require solving a set of nonlinear equations. A common approach to the problem seeks
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to avoid this difficulty by linearizing the model. A first order Taylor’s series expansion

about the point x0 with remainder gives

yi = h(x0,θ0)+(xi − x0)
′ ∂h(x0,θ0)

∂x
+νi

Define

α∗ = h(x0,θ0)− x′0
∂h(x0,θ0)

∂x

β∗ =
∂h(x0,θ0)

∂x

Given this, one might try to estimate α∗ and β∗ by applying OLS to

yi = α+βxi +νi

• Question, will α̂ and β̂ be consistent for α∗ and β∗?

• The answer is no, as one can see by interpreting α̂ and β̂ as extremum estimators.

Let γ = (α,β′)′.

γ̂ = argminsn(γ) =
1
n

n

∑
i=1

(yi −α−βxi)
2

The objective function converges to its expectation

sn(γ)
u.a.s.→ s∞(γ) = EX EY |X (y−α−βx)2

and γ̂ converges a.s. to the γ0 that minimizes s∞(γ):

γ0 = argminEX EY |X (y−α−βx)2
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Noting that

EX EY |X
(
y−α− x′β

)2
= EX EY |X

(
h(x,θ0)+ ε−α−βx

)2

= σ2 +EX
(
h(x,θ0)−α−βx

)2

since cross products involving ε drop out. α0 and β0 correspond to the hyperplane

that is closest to the true regression function h(x,θ0) according to the mean squared

error criterion. This depends on both the shape of h(·) and the density function of the

conditioning variables.

x_0

α

β

x

x

x

x

x
x x

x

x

x

Tangent line

Fitted line

Inconsistency of the linear approximation, even at 
the approximation point

h(x,θ)

• It is clear that the tangent line does not minimize MSE, since, for example, if

h(x,θ0) is concave, all errors between the tangent line and the true function are

negative.

• Note that the true underlying parameter θ0 is not estimated consistently, either

(it may be of a different dimension than the dimension of the parameter of the

approximating model, which is 2 in this example).
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• Second order and higher-order approximations suffer from exactly the same

problem, though to a less severe degree, of course. For this reason, translog,

Generalized Leontiev and other “flexible functional forms” based upon second-

order approximations in general suffer from bias and inconsistency. The bias

may not be too important for analysis of conditional means, but it can be very

important for analyzing first and second derivatives. In production and consumer

analysis, first and second derivatives (e.g., elasticities of substitution) are often

of interest, so in this case, one should be cautious of unthinking application of

models that impose stong restrictions on second derivatives.

• This sort of linearization about a long run equilibrium is a common practice in

dynamic macroeconomic models. It is justified for the purposes of theoretical

analysis of a model given the model’s parameters, but it is not justifiable for the

estimation of the parameters of the model using data. The section on simulation-

based methods offers a means of obtaining consistent estimators of the param-

eters of dynamic macro models that are too complex for standard methods of

analysis.
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17 Numeric optimization methods

Readings: Hamilton, ch. 5, section 7 (pp. 133-139)∗; Gourieroux and Monfort, Vol.

1, ch. 13, pp. 443-60∗; Goffe, et. al. (1994).

There is a large literature on numeric optimization methods. We’ll consider a few

well-known techniques, and one fairly new technique that may allow one to solve

difficult problems.

The general problem we consider is how to find the maximizing element θ̂ (a K

-vector) of a function s(θ). This function may not be continuous, and it may not be

differentiable. Even if it is twice continuously differentiable, it may not be globally

concave, so local maxima, minima and saddlepoints may all exist. Supposing s(θ)

were a quadratic function of θ, e.g.,

s(θ) = a+b′θ+
1
2

θ′Cθ,

the first order conditions would be linear:

Dθs(θ) = b+Cθ

so the maximizing (minimizing) element would be θ̂ =−C−1b. This is the sort of prob-

lem we have with linear models estimated by OLS. It’s also the case for feasible GLS,

since conditional on the estimate of the varcov matrix, we have a quadratic objective

function in the remaining parameters.

More general problems will not have linear f.o.c., and we will not be able to solve

for the maximizer analytically. This is when we need a numeric optimization method.
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17.1 Search

See Hamilton. Note, to check q values in each dimension of a K dimensional parameter

space, we need to check qK points. For example, if q = 100 and K = 10, there would

be 10010 = 100000000000000000000 points to check. If 1000 points can be checked

in a second, it would take 3.171× 109 years to perform the calculations, which is

approximately the age of the earth. The search method is a very reasonable choice if

K is small, but it quickly becomes infeasible if K is moderate or large.

The maximizing
point

Search in two dimensions with refinement

17.2 Derivative-based methods

17.2.1 Introduction

Derivative-based methods are defined by

1. the method for choosing the initial value, θ1

2. the iteration method for choosing θk+1 given θk (based upon derivatives)
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3. the stopping criterion.

The iteration method can be broken into two problems: choosing the stepsize ak (a

scalar) and choosing the direction of movement, dk, which is of the same dimension

of θ, so that

θ(k+1) = θ(k) +akdk.

A locally increasing direction of search d is a direction such that

∃a :
∂s(θ+ad)

∂a
> 0

for a positive but small. That is, if we go in direction d, we will improve on the

objective function, at least if we don’t go too far in that direction.

• As long as the gradient at θ is not zero there exist increasing directions, and

they can all be represented as Qkg(θk) where Qk is a symmetric pd matrix and

g(θ) = Dθs(θ) is the gradient at θ. To see this, take a T.S. expansion around

a0 = 0

s(θ+ad) = s(θ+0d)+(a−0)g(θ+0d)′d +o(1)

= s(θ)+ag(θ)′d +o(1)

For small enough a the o(1) term can be ignored. If d is to be an increasing

direction, we need g(θ)′d > 0. Defining d = Qg(θ), where Q is positive definite,

we guarantee that

g(θ)′d = g(θ)′Qg(θ) > 0

unless g(θ) = 0. Every increasing direction can be represented in this way (p.d.

matrices are those such that the angle between g and Qg(θ) is less that 90 de-
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grees.)

• With this, the iteration rule becomes

θ(k+1) = θ(k) +akQkg(θk)

and we keep going until the gradient becomes zero, so that there is no increasing

direction. The problem is how to choose a and Q.

• Conditional on Q, choosing a is fairly straightforward. A simple line search is

an attractive possibility, since a is a scalar.

• The remaining problem is how to choose Q.

• Note also that this gives no guarantees to find a global maximum.

17.2.2 Steepest descent

Steepest descent (ascent if we’re maximizing) just sets Q to and identity matrix, since

the gradient provides the direction of maximum rate of change of the objective func-

tion.

• Advantages: fast - doesn’t require anything more than first derivatives.

• Disadvantages: This doesn’t always work too well however....Draw banana func-

tion.

17.2.3 Newton-Raphson

The Newton-Raphson method uses information about the slope and curvature of the

objective function to determine which direction and how far to move from an initial
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point. Supposing we’re trying to maximize sn(θ). Take a second order Taylor’s series

approximation of sn(θ) about θk (an initial guess).

sn(θ) ≈ sn(θk)+g(θk)′
(

θ−θk
)

+1/2
(

θ−θk
)′

H(θk)
(

θ−θk
)

To attempt to maximize sn(θ), we can maximize the portion of the right-hand side that

depends on θ, e.g, we can maximize

s̃(θ) = g(θk)′θ+1/2
(

θ−θk
)′

H(θk)
(

θ−θk
)

with respect to θ. This is a much easier problem, since it is a quadratic function in θ,

so it has linear first order conditions. These are

Dθs̃(θ) = g(θk)+H(θk)
(

θ−θk
)

So the solution for the next round estimate is

θk+1 = θk −H(θk)−1g(θk)

However, it’s good to include a stepsize, since the approximation to sn(θ) may be

bad far away from the maximizer θ̂, so the actual iteration formula is

θk+1 = θk −akH(θk)−1g(θk)

• A potential problem is that the Hessian may not be negative definite when we’re

far from the maximizing point. So −H(θk)−1 may not be positive definite, and

−H(θk)−1g(θk) may not define an increasing direction of search. This can hap-

pen when the objective function has flat regions, in which case the Hessian ma-
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trix is very ill-conditioned (e.g., is nearly singular), or when we’re in the vicinity

of a local minimum, H(θk) is positive definite, and our direction is a decreas-

ing direction of search. Matrix inverses by computers are subject to large errors

when the matrix is ill-conditioned. Also, we certainly don’t want to go in the

direction of a minimum when we’re maximizing. To solve this problem, Quasi-

Newton methods simply add a positive definite component to H(θ) to ensure that

the resulting matrix is positive definite, e.g., Q = −H(θ)+bI, where b is chosen

large enough so that Q is well-conditioned and positive definite. This has the

benefit that improvement in the objective function is guaranteed.

• Another variation of quasi-Newton methods is to approximate the Hessian by

using successive gradient evaluations. This avoids actual calculation of the Hes-

sian, which is an order of magnitude (in the dimension of the parameter vector)

more costly than calculation of the gradient. They can be done to ensure that the

approximation is p.d. DFP and BFGS are two well-known examples.

Stopping criteria The last thing we need is to decide when to stop. A digital com-

puter is subject to limited machine precision and round-off errors. For these reasons,

it is unreasonable to hope that a program can exactly find the point that maximizes a

function, and in fact, more than about 6-10 decimals of precision is usually infeasible.

Some stopping criteria are:

• Negligable change in parameters:

|θk
j −θk−1

j | < ε1,∀ j
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• Negligable relative change:

|
θk

j −θk−1
j

θk−1
j

| < ε2,∀ j

• Negligable change of function:

|s(θk)− s(θk−1)| < ε3

• Gradient negligibly different from zero:

|g j(θk)−g j(θk−1)| < ε4,∀ j

• Or, even better, check all of these.

• Also, if we’re maximizing, it’s good to check that the last round (real, not ap-

proximate) Hessian is negative definite.

Starting values The Newton-Raphson and related algorithms work well if the objec-

tive function is concave (when maximizing), but not so well if there are convex regions

and local minima or multiple local maxima. The algorithm may converge to a local

minimum or to a local maximum that is not optimal. The algorithm may also have

difficulties converging at all.

• The usual way to “ensure” that a global maximum has been found is to use

many different starting values, and choose the solution that returns the highest

objective function value. THIS IS IMPORTANT in practice.
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Calculating derivatives The Newton-Raphson algorithm requires first and second

derivatives. It is often difficult to calculate derivatives (especially the Hessian) analyti-

cally if the function sn(·) is complicated. Possible solutions are to calculate derivatives

numerically, or to use programs such as Mathematica or Scientific WorkPlace to cal-

culate analytic derivatives. Example: Scientific WorkPlace can be used to find that

∂
∂θ

arctanθ =
1

1+θ2

which I certainly didn’t know before writing this example. Hal Varian has a book that

discusses the use of Mathematica in this context in detail. Analytic derivatives usually

lead to a much faster program, and are more accurate than numeric derivatives.

• Numeric derivatives lead to much slower estimation than analytic derivatives.

• Numeric derivatives are much more accurate if the data are scaled so that the

elements of the gradient are of the same order of magnitude. Example: if the

model is yt = h(αxt +βzt)+εt, and estimation is by NLS, suppose that Dαsn(·)=

1000 and Dβsn(·) = 0.001. One could define α∗ = α/1000; x∗t = 1000xt;β∗ =

1000β;z∗t = zt/1000. In this case, the gradients Dα∗sn(·) and Dβsn(·) will both

be 1.

In general, estimation programs always work better if data is scaled in this way,

since roundoff errors are less likely to become important. This is important in

practice.

• There are algorithms (such as Davidon-Fletcher-Powell, see GAUSS OPTMUM)

that use the sequential gradient evaluations to build up an approximation to the

Hessian. The iterations are faster for this reason since the actual Hessian isn’t

calculated, but more iterations usually are required for convergence.
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• Switching between algorithms during iterations is sometimes useful.

17.3 Simulated Annealing

Simulated annealing is an algorithm which can find an optimum in the presence of

nonconcavities, discontinuities and multiple local minima/maxima. Basically, the al-

gorithm randomly selects evaluation points, accepts all points that yield an increase in

the objective function, but also accepts some points that decrease the objective func-

tion. This allows the algorithm to escape from local minima. As more and more points

are tried, periodically the algorithm focuses on the best point so far, and reduces the

range over which random points are generated. Also, the probability that a negative

move is accepted reduces. The algorithm relies on many evaluations, as in the search

method, but focuses in on promising areas, which reduces function evaluations with

respect to the search method. It does not require derivatives to be evaluated. I have a

program to do this if you’re interested.
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18 Generalized method of moments (GMM)

Readings: Hamilton Ch. 14∗; Davidson and MacKinnon, Ch. 17 (see pg. 587 for

refs. to applications); Newey and McFadden (1994), “Large Sample Estimation and

Hypothesis Testing,” in Handbook of Econometrics, Vol. 4, Ch. 36.

18.1 Definition

We’ve already seen one example of GMM in the introduction, based upon the χ2 dis-

tribution. Consider the following example based upon the t-distribution. The density

function of a t-distributed r.v. Yt is

fYt (yt ,θ0) =
Γ
[(

θ0 +1
)
/2
]

(πθ0)
1/2 Γ(θ0/2)

[
1+
(
y2

t /θ0)]−(θ0+1)/2

Given an iid sample of size n, one could estimate θ0 by maximizing the log-likelihood

function

θ̂ ≡ argmax
Θ

lnLn(θ) =
n

∑
t=1

ln fYt (yt ,θ)

• This approach is attractive since ML estimators are asymptotically efficient. This

is because the ML estimator uses all of the available information (e.g., the dis-

tribution is fully specified up to a parameter). Recalling that a distribution is

completely characterized by its moments, the ML estimator is interpretable as a

GMM estimator that uses all of the moments. The method of moments estimator

uses only K moments to estimate a K− dimensional parameter. Since informa-

tion is discarded, in general, by the MM estimator, efficiency is lost relative to

the ML estimator.

• Continuing with the example, a t-distributed r.v. with density fYt (yt ,θ0) has
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mean zero and variance V (yt) = θ0/
(
θ0 −2

)
(for θ0 > 2).

• Using the notation introduced previously, define a moment condition m1t(θ) =

θ/(θ−2)− y2
t and m1(θ) = 1/n∑n

t=1 m1t(θ) = θ/(θ−2)−1/n∑n
t=1 y2

t . As be-

fore, when evaluated at the true parameter value θ0, both Eθ0

[
m1t(θ0)

]
= 0 and

Eθ0

[
m1(θ0)

]
= 0.

• Choosing θ̂ to set m1(θ̂) ≡ 0 yields a MM estimator:

θ̂ =
2

1− n
∑i y2

i

(23)

This estimator is based on only one moment of the distribution - it uses less information

than the ML estimator, so it is intuitively clear that the MM estimator will be inefficient

relative to the ML estimator.

• An alternative MM estimator could be based upon the fourth moment of the

t-distribution. The fourth moment of a t-distributed r.v. is

µ4 ≡ E(y4
t ) =

3
(
θ0
)2

(θ0 −2)(θ0 −4)
,

provided θ0 > 4. We can define a second moment condition

m2(θ) =
3(θ)2

(θ−2)(θ−4)
− 1

n

n

∑
t=1

y4
t

• A second, different MM estimator chooses θ̂ to set m2(θ̂) ≡ 0. If you solve this

you’ll see that the estimate is different from that in equation 23.

This estimator isn’t efficient either, since it uses only one moment. A GMM estimator

would use the two moment conditions together to estimate the single parameter. The
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GMM estimator is overidentified, which leads to an estimator which is efficient relative

to the just identified MM estimators (more on efficiency later).

• As before, set mn(θ) = (m1(θ),m2(θ))′ . The n subscript is used to indicate the

sample size. Note that m(θ0) = Op(n−1/2), since it is an average of centered

random variables, whereas m(θ) = Op(1), θ 6= θ0, where expectations are taken

using the true distribution with parameter θ0. This is the fundamental reason that

GMM is consistent.

• A GMM estimator requires defining a measure of distance, d (m(θ)). A popular

choice (for reasons noted below) is to set d (m(θ)) = m′Wnm, and we minimize

sn(θ) = m(θ)′Wnm(θ). We assume Wn converges to a finite positive definite ma-

trix.

• In general, assume we have g moment conditions, so m(θ) is a g -vector and W

is a g×g matrix.

For the purposes of this course, the following definition of the GMM estimator is

sufficiently general:

Definition 60 The GMM estimator of the K -dimensional parameter vector θ0, θ̂ ≡

argminΘ sn(θ) ≡ mn(θ)′Wnmn(θ), where mn(θ) = ∑n
t=1 mt(θ) is a g -vector, g ≥ K,

with Em(θ0) = 0, and Wn converges almost surely to a finite g×g symmetric positive

definite matrix W∞.

• What’s the reason for using GMM if MLE is asymptotically efficient? The

answer is simple - GMM is based upon a limited set of moment conditions.

For consistency, only these moment conditions need to be correctly specified,

whereas MLE in effect requires correct specification of every conceivable mo-

ment condition. GMM is robust with respect to distributional misspecification.
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The price for robustness is loss of efficiency with respect to the MLE estimator.

Keep in mind that the true distribution is not known so if we erroneously specify

a distribution and estimate by MLE, the estimator will be inconsistent in general

(not always).

18.2 Identification

In the consistency proof (Theorem 55) the third assumption reads: (c) Identification:

s∞(·) has a unique global maximum at θ0, i.e., s∞(θ0) > s∞(θ), ∀θ 6= θ0. Taking the

case of a quadratic objective function sn(θ) = mn(θ)′Wnmn(θ), first consider mn(θ).

• Applying a uniform law of large numbers, we get mn(θ)
a.s.→ m∞(θ).

• Since Emn(θ0) = 0 by assumption, m∞(θ0) = 0.

• Since s∞(θ0) = m∞(θ0)′W∞m∞(θ0) = 0, in order for asymptotic identification,

we need that m∞(θ) 6= 0 for θ 6= θ0, for at least some element of the vector. This

and the assumption that Wn
a.s.→ W∞, a finite positive g× g definite g× g matrix

guarantee that θ0 is asymptotically identified.

• Note that asymptotic identification does not rule out the possibility of lack of

identification for a given data set - there may be multiple minimizing solutions

in finite samples.

18.3 Consistency

We simply assume that the assumptions of Theorem 55 hold, so the GMM estimator

is strongly consistent.
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18.4 Asymptotic normality

We also simply assume that the conditions of Theorem 58 hold, so we will have asymp-

totic normality. However, we do need to find the structure of the asymptotic variance-

covariance matrix of the estimator. From Theorem 58, we have

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′ sn(θ) and I∞(θ0) = limn→∞ Var
√

n ∂
∂θsn(θ0).

We need to determine the form of these matrices given the objective function sn(θ) =

mn(θ)′Wnmn(θ).

Now using the product rule from the introduction,

∂
∂θ

s(θ) = 2

[
∂

∂θ
m

′
n (θ)

]
Wnmn (θ)

Define the K ×g matrix

Dn(θ) ≡ ∂
∂θ

m′
n (θ) ,

so
∂

∂θ
s(θ) = 2D(θ)Wm(θ) .

(Note that Dn(θ), Wn and mn(θ) all depend on the sample size n, but we will often

simplify the notation to D, W, and m).

To take second derivatives, let Di be the i− th row of D(θ). Using the product rule,

∂
∂θ′∂θi

s(θ) =
∂

∂θ′
2Di(θ)Wnm(θ)

= 2DiW D′+2m′W

[
∂

∂θ′
D′

i

]
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When evaluating the term

2m(θ)′W
[

∂
∂θ′

D(θ)′i

]

at θ0, assume that ∂
∂θ′ D(θ)′i satisfies a LLN, so that it converges almost surely to a finite

limit. In this case, we have

2m(θ0)′W

[
∂

∂θ′
D(θ0)′i

]
a.s.→ 0,

since m(θ0) = op(1), W
a.s.→ W∞.

Stacking these results over the K rows of D, we get

lim
∂2

∂θ∂θ′
sn(θ0) = J∞(θ0) = 2D∞W∞D′

∞,a.s.,

where we define limD = D∞, a.s., and limW = W∞, a.s. (we assume a LLN holds).

With regard to I∞(θ0),

I∞(θ0) = lim
n→∞

Var
√

n
∂

∂θ
sn(θ0)

= lim
n→∞

E4nDnWnm(θ0)m(θ)′ 6WnD′
n

= lim
n→∞

E4DnWn
{√

nm(θ0)
}{√

nm(θ)′
}
6WnD′

n

since Em(θ0) = 0 by assumption (that is, the moment conditions are correctly speci-

fied, by assumption, so there is no need to subtract the mean) . Now, given that m(θ0)

is an average of centered (mean-zero) quantities, it is reasonable to expect a CLT to

apply, after multiplication by
√

n. Assuming this,

√
nm(θ0)

d→ N(0,Ω∞),
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where

Ω∞ = lim
n→∞

E
[
nm(θ0)m(θ0)′

]
.

Using this, and the last equation, we get

I∞(θ0) = 4D∞W∞Ω∞W∞D′
∞

Using these results, the asymptotic normality theorem gives us

√
n
(
θ̂−θ0) d→ N

[
0,
(
D∞W∞D′

∞
)−1

D∞W∞Ω∞W∞D′
∞
(
D∞W∞D′

∞
)−1
]
,

the asymptotic distribution of the GMM estimator for arbitrary weighting matrix Wn.

Note that for J∞ to be positive definite, D∞ must have full row rank, ρ(D∞) = k.

18.5 Choosing the weighting matrix

W is a weighting matrix, which determines the relative importance of violations of

the individual moment conditions. For example, if we are much more sure of the first

moment condition, which is based upon the variance, than of the second, which is

based upon the fourth moment, we could set

W




a 0

0 b




with a much larger than b. In this case, errors in the second moment condition have

less weight in the objective function.

• Since moments are not independent, in general, we should expect that there be a

correlation between the moment conditions, so it may not be desirable to set the
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off-diagonal elements to 0. W may be a random, data dependent matrix.

• We have already seen that the choice of W will influence the asymptotic distri-

bution of the GMM estimator. Since the GMM estimator is already inefficient

w.r.t MLE, we might like to choose the W matrix to make the GMM estimator

efficient within the class of GMM estimators.

• To provide a little intuition, consider the linear model y = x′β + ε, where ε ∼

N(0,Ω). That is, he have heteroscedasticity and autocorrelation.

• Let P be the Cholesky factorization of Ω−1, e.g, P′P = Ω−1.

• Then the model Py = PXβ+Pε satisfies the classical assumptions of homoscedas-

ticity and nonautocorrelation, since V (Pε) = PV (ε)P′ = PΩP′ = P(P′P)−1P′ =

PP−1 (P′)−1 P′ = In. (Note: we use (AB)−1 = B−1A−1 for A, B both nonsingu-

lar). This means that the transformed model is efficient.

• The OLS estimator of the model Py = PXβ + Pε minimizes the objective func-

tion (y−Xβ)′Ω−1(y−Xβ). Interpreting (y−Xβ) = ε(β) as moment conditions

(note that they do have zero expectation when evaluated at β0), the optimal

weighting matrix is seen to be the inverse of the covariance matrix of the moment

conditions. This result carries over to GMM estimation. (Note: this presentation

of GLS is not a GMM estimator, because the number of moment conditions here

is equal to the sample size, n. Later we’ll see that GLS can be put into the GMM

framework defined above).

Theorem 61 If θ̂ is a GMM estimator that minimizes mn(θ)′Wnmn(θ), the asymptotic

variance of θ̂ will be minimized by choosing Wn so that Wn
a.s→W∞ = Ω−1

∞ , where Ω∞ =

limn→∞ E
[
nm(θ0)m(θ0)′

]
.
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Proof: For W∞ = Ω−1
∞ , the asymptotic variance

(
D∞W∞D′

∞
)−1

D∞W∞Ω∞W∞D′
∞
(
D∞W∞D′

∞
)−1

simplifies to
(
D∞Ω−1

∞ D′
∞
)−1

. Now, for any choice such that W∞ 6= Ω−1
∞ , consider the

difference of the inverses of the variances when W = Ω−1 versus when W is some

arbitrary positive definite matrix:

(
D∞Ω−1

∞ D′
∞
)
−
(
D∞W∞D′

∞
)[

D∞W∞Ω∞W∞D′
∞
]−1 (

D∞W∞D′
∞
)

= D∞Ω−1/2
∞

[
I −Ω1/2

∞
(
W∞D′

∞
)[

D∞W∞Ω∞W∞D′
∞
]−1

D∞W∞Ω1/2
∞

]
Ω−1/2

∞ D′
∞

as can be verified by multiplication. The term in brackets is idempotent, which is also

easy to check by multiplication, and is therefore positive semidefinite. A quadratic

form in a positive semidefinite matrix is also positive semidefinite. The difference of

the inverses of the variances is positive semidefinite, which implies that the difference

of the variances is negative semidefinite, which proves the theorem.

The result

√
n
(
θ̂−θ0) d→ N

[
0,
(
D∞Ω−1

∞ D′
∞
)−1
]

(24)

allows us to treat

θ̂ ≈ N

(
θ0,

(
D∞Ω−1

∞ D′
∞
)−1

n

)
,

where the ≈ means ”approximately distributed as.” To operationalize this we need

estimators of D∞ and Ω∞.

• The obvious estimator of D̂∞ is simply ∂
∂θm′

n

(
θ̂
)
, which is consistent by the con-

sistency of θ̂, assuming that ∂
∂θm′

n is continuous in θ. Stochastic equicontinuity

276



results can give us this result even if ∂
∂θm′

n is not continuous. We now turn to

estimation of Ω∞.

18.6 Estimation of the variance-covariance matrix

(See Hamilton Ch. 10, pp. 261-2 and 280-84)∗.

In the case that we with to use the optimal weighting matrix, we need an estimate

of Ω∞, the variance-covariance matrix of the moment conditions m = ∑n
t=1 mt . We

assume that mt is covariance stationary (the covariance between mt and mt−s does not

depend on t). In general, we expect that:

• mt will be autocorrelated ( Γs = E(mtm′
t−s) 6= 0 ) Note that this autocovariance

does not depend on t.

• contemporaneously correlated ( E(mitm jt) 6= 0 )

• and heteroscedastic (E(m2
it) = σ2

i , which depends upon i ).

While one could estimate Ω∞ parametrically, we in general have little information

upon which to base a parametric specification. Recent research has focused on con-

sistent nonparametric estimators of Ω∞. These estimators should work well asymptoti-

cally, but there’s no guarantee that they will work well in small samples, since Ω∞ may

be estimated very imprecisely. This is analogous to the fact that feasible GLS does not

always work better than OLS with small samples. An interesting topic for research

(actually, I’m pretty sure this has already been done) would be to compare the perfor-

mance of GMM using the estimators discussed below with choices of W that may be

inconsistent, but precisely estimable with small samples.

Define the v− th autocovariance of the moment conditions Γv = E(mtm′
t−s). Note

that E(mtm′
t+s) = Γ′

v. Recall that mt and m are functions of θ, so for now assume that
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we have some consistent estimator of θ0, so that m̂t = mt(θ̂). Now

Ωn = E
[
nm(θ0)m(θ0)′

]
= E

[
n

(
1/n

n

∑
t=1

mt

)(
1/n

n

∑
t=1

m′
t

)]

= E

[
1/n

(
n

∑
t=1

mt

)(
n

∑
t=1

m′
t

)]

= Γ0 +
n−1

n

(
Γ1 +Γ′

1

)
+

n−2
n

(
Γ2 +Γ′

2

)
· · ·+ 1

n

(
Γn−1 +Γ′

n−1

)

A natural, consistent estimator of Γv is

Γ̂v = 1/n
n

∑
t=v+1

m̂tm̂
′
t−v.

(you might use n − v in the denominator instead). So, a natural, but inconsistent,

estimator of Ω∞ would be

Ω̂ = Γ̂0 +
n−1

n

(
Γ̂1 + Γ̂′

1

)
+

n−2
n

(
Γ̂2 + Γ̂′

2

)
+ · · ·+

(
Γ̂n−1 + Γ̂′

n−1

)

= Γ̂0 +
n−1

∑
v=1

n− v
n

(
Γ̂v + Γ̂′

v

)
.

This estimator is inconsistent in general, since the number of parameters to estimate is

more than the number of observations, and increases more rapidly than n, so informa-

tion does not build up as n → ∞.

On the other hand, supposing that Γv tends to zero sufficiently rapidly as v tends to

∞, a modified estimator

Ω̂ = Γ̂0 +
q(n)

∑
v=1

(
Γ̂v + Γ̂′

v

)
,

where q(n)
p→ ∞ as n → ∞ will be consistent, provided q(n) grows sufficiently slowly.

The term n−v
n can be dropped because q(n) must be op(n). This allows information to

accumulate at a rate that satisfies a LLN. A disadvantage of this estimator is that is
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may not be positive definite. This could cause one to calculate a negative χ2 statistic,

for example!

• Note: the formula for Ω̂ requires an estimate of m(θ0), which in turn requires

an estimate of θ, which is based upon an estimate of Ω! The solution to this

circularity is to set the weighting matrix W arbitrarily (for example to an iden-

tity matrix), obtain a first consistent but inefficient estimate of θ0, then use this

estimate to form Ω̂, then re-estimate θ0. The process can be iterated until neither

Ω̂ nor θ̂ change appreciably between iterations.

18.6.1 Newey-West covariance estimator

The Newey-West estimator (Econometrica, 1987) solves the problem of possible non-

positive definiteness of the above estimator. Their estimator is

Ω̂ = Γ̂0 +
q(n)

∑
v=1

[
1− v

q+1

](
Γ̂v + Γ̂′

v

)
.

This estimator is p.d. by construction. The condition for consistency is that n−1/4q →

0. Note that this is a very slow rate of growth for q. This estimator is nonparametric -

we’ve placed no parametric restrictions on the form of Ω. It is an example of a kernel

estimator.

In a more recent paper, Newey and West (Review of Economic Studies, 1994) use

pre-whitening before applying the kernel estimator. The idea is to fit a VAR model

to the moment conditions. It is expected that the residuals of the VAR model will be

more nearly white noise, so that the Newey-West covariance estimator might perform

better with short lag lengths..
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The VAR model is

m̂t = Θ1m̂t−1 + · · ·+Θpm̂t−p +ut

This is estimated, giving the residuals ût . Then the Newey-West covariance estimator is

applied to these pre-whitened residuals, and the covariance Ω is estimated combining

the fitted VAR

̂̂mt = Θ̂1m̂t−1 + · · ·+ Θ̂pm̂t−p

with the kernel estimate of the covariance of the ut . See Newey-West for details.

• I have a program that does this if you’re interested.

18.7 Estimation using conditional moments

If the above VAR model does succeed in removing unmodeled heteroscedasticity and

autocorrelation, might this imply that this information is not being used efficiently

in estimation? In other words, since the performance of GMM depends on which

moment conditions are used, if the set of selected moments exhibits heteroscedasticity

and autocorrelation, can’t we use this information, a la GLS, to guide us in selecting

a better set of moment conditions to improve efficiency? The answer to this may not

be so clear when moments are defined unconditionally, but it can be analyzed more

carefully when the moments used in estimation are derived from conditional moments.

So far, the moment conditions have been presented as unconditional expectations.

One common way of defining unconditional moment conditions is based upon condi-

tional moment conditions.

Suppose that a random variable Y has zero expectation conditional on the random
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variable X

EY |XY =
�

Y f (Y |X)dY = 0

Then the unconditional expectation of the product of Y and a function g(X) of X is

also zero. The unconditional expectation is

EY g(X) =

�
X

( �
Y

Y g(X) f (Y,X)dY

)
dX .

This can be factored into a conditional expectation and an expectation w.r.t. the

marginal density of X :

EY g(X) =
�

X

( �
Y

Y g(X) f (Y |X)dY

)
f (X)dX .

Since g(X) doesn’t depend on Y it can be pulled out of the integral

EY g(X) =

�
X

( �
Y

Y f (Y |X)dY

)
g(X) f (X)dX .

But the term in parentheses on the rhs is zero by assumption, so

EY g(X) = 0

as claimed.

This is important econometrically, since models often imply restrictions on condi-

tional moments. Suppose a model tells us that the function K(yt ,xt) has expectation,

conditional on the information set It , equal to k(xt ,θ),

EθK(yt ,xt)|It = k(xt ,θ).
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Then the function

ht(θ) = K(yt ,xt)− k(xt ,θ)

has conditional expectation equal to zero

Eθht(θ)|It = 0.

This is a scalar moment condition,which wouldn’t be sufficient to identify a K (K > 1)

dimensional parameter θ. However, the above result allows us to form various uncon-

ditional expectations

mt(θ) = Z(wt)ht(θ)

where Z(wt) is a gx1-vector valued function of wt and wt is a set of variables drawn

from the information set It . The Z(wt) are instrumental variables. We now have g

moment conditions, so as long as g > K the necessary condition for identification

holds.

One can form the n×g matrix

Zn =




Z1(w1) Z2(w1) · · · Zg(w1)

Z1(w2) Z2(w2) Zg(w2)

...
...

Z1(wn) Z2(wn) · · · Zg(wn)




=




Z′
1

Z′
2

Z′
n
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With this we can form the g moment conditions

mn(θ) =
1
n

Z′
n




h1(θ)

h2(θ)

...

hn(θ)




=
1
n

Z′
nhn(θ)

=
1
n

n

∑
t=1

Ztht(θ)

=
1
n

n

∑
t=1

mt(θ)

where Z(t,·) is the tth row of Zn. This fits the previous treatment. An interesting ques-

tion that arises is how one should choose the instrumental variables Z(wt) to achieve

maximum efficiency.

Note that with this choice of moment conditions, we have that Dn ≡ ∂
∂θm′(θ) (a

K ×g matrix) is

Dn(θ) =
∂

∂θ
1
n

(
Z′

nhn(θ)
)′

=
1
n

(
∂

∂θ
h′n (θ)

)
Zn

which we can define to be

Dn(θ) =
1
n

HnZn.

where Hn is a K×n matrix that has the derivatives of the individual moment conditions
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as its columns. Likewise, define the var-cov. of the moment conditions

Ωn = E
[
nmn(θ0)mn(θ0)′

]

= E
[

1
n

Z′
nhn(θ)hn(θ)′Zn

]

= Z′
nE
(

1
n

hn(θ)hn(θ)′
)

Zn

≡ Z′
n

Φn

n
Zn

where we have defined Φn = Varhn(θ). Note that matrix is growing with the sample

size and is not consistently estimable without additional assumptions.

The asymptotic normality theorem above says that the GMM estimator using the

optimal weighting matrix is distributed as

√
n
(
θ̂−θ0) d→ N(0,V∞)

where

V∞ = lim
n→∞

((
HnZn

n

)(
Z′

nΦnZn

n

)−1(Z′
nH ′

n

n

))−1

. (25)

Using an argument similar to that used to prove that Ω−1
∞ is the efficient weighting

matrix, we can show that putting

Zn = Φ−1
n H ′

n

causes the above var-cov matrix to simplify to

V∞ = lim
n→∞

(
HnΦ−1

n H ′
n

n

)−1

. (26)

and furthermore, this matrix is smaller that the limiting var-cov for any other choice
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of instrumental variables. (To prove this, examine the difference of the inverses of the

var-cov matrices with the optimal intruments and with non-optimal instruments. As

above, you can show that the difference is positive semi-definite).

• Note that both Hn, which we should write more properly as Hn(θ0), since it

depends on θ0, and Φ must be consistently estimated to apply this.

• Usually, estimation of Hn is straightforward - one just uses

Ĥ =
∂

∂θ
h′n
(
θ̃
)
,

where θ̃ is some initial consistent estimator based on non-optimal instruments.

• Estimation of Φn may not be possible. It is an n×n matrix, so it has more unique

elements than n, the sample size, so without restrictions on the parameters it

can’t be estimated consistently. Basically, you need to provide a parametric

specification of the covariances of the ht(θ) in order to be able to use optimal

instruments. A solution is to approximate this matrix parametrically to define

the instruments. Note that the simplified var-cov matrix in equation 26 will not

apply if approximately optimal instruments are used - it will be necessary to use

an estimator based upon equation 25, where the term Z′
nΦnZn

n must be estimated

consistently apart, for example by the Newey-West procedure.

18.8 Estimation using dynamic moment conditions

Note that dynamic moment conditions simplify the var-cov matrix, but are often harder

to formulate. The will be added in future editions. For now, the Hansen application

below is enough.
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18.9 A specification test

The first order conditions for minimization, using the an estimate of the optimal weight-

ing matrix, are
∂

∂θ
s(θ̂) = 2

[
∂

∂θ
m

′
n

(
θ̂
)]

Ω̂−1mn
(
θ̂
)
≡ 0

or

D(θ̂)Ω̂−1mn(θ̂) ≡ 0

Consider a Taylor expansion of m(θ̂):

m(θ̂) = mn(θ0)+D′
n(θ

0)
(
θ̂−θ0)+op(1)

Multiplying by D(θ̂)Ω̂−1 we obtain

D(θ̂)Ω̂−1m(θ̂) = D(θ̂)Ω̂−1mn(θ0)+D(θ̂)Ω̂−1D(θ0)′
(
θ̂−θ0)+op(1)

The lhs is zero, and since θ̂ tends to θ0 and Ω̂ tends to Ω∞, we can write

D∞Ω−1
∞ mn(θ0)

a
= −D∞Ω−1

∞ D′
∞
(
θ̂−θ0)

or

√
n
(
θ̂−θ0) a

= −
√

n
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1
∞ mn(θ0)

With this we can write

√
nm(θ̂)

a
=

√
nmn(θ0)−

√
nD′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1
∞ mn(θ0)
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This last can be written as

√
nm(θ̂)

a
=

√
n
(

Ω1/2
∞ −D′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
Ω−1/2

∞ mn(θ0)

Or

√
nΩ−1/2

∞ m(θ̂)
a
=
√

n
(

Ig −Ω−1/2
∞ D′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
Ω−1/2

∞ mn(θ0)

Now
√

nΩ−1/2
∞ mn(θ0)

d→ N(0, Ig)

and one can easily verify that

P =
(

Ig −Ω−1/2
∞ D′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)

is idempotent of rank g−K, (recall that the rank of an idempotent matrix is equal to

its trace) so

(√
nΩ−1/2

∞ m(θ̂)
)′(√

nΩ−1/2
∞ m(θ̂)

)
= nm(θ̂)′Ω−1

∞ m(θ̂)
a
˜ χ2(g−K)

Since Ω̂ converges to Ω∞, we also have

nm(θ̂)′Ω̂−1m(θ̂)
a
˜ χ2(g−K)

or

n · sn(θ̂)
a
˜ χ2(g−K)

supposing the model is correctly specified. This is a convenient test since we just

multiply the optimized value of the objective function by n, and compare with a χ2(g−
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K) critical value. The test is a general test of whether or not the moments used to

estimate are correctly specified.

• This won’t work when the estimator is just identified. The f.o.c. are

Dθsn(θ) = DΩ̂m(θ̂) ≡ 0.

But with exact identification, both D and Ω̂ are square and invertible (at least

asymptotically, assuming that asymptotic normality hold), so

m(θ̂) ≡ 0.

So the moment conditions are zero regardless of the weighting matrix used. As

such, we might as well use an identity matrix and save trouble. Also sn(θ̂) = 0,

so the test breaks down.

• A note: this sort of test often over-rejects in finite samples. If the sample size is

small, it might be better to use bootstrap critical values. That is, draw artificial

samples of size n by sampling from the data with replacement. For R bootstrap

samples, optimize and calculate the test statistic n · s(θ̂ j), j = 1,2, ...,R. Define

the bootstrap critical value Cb such that α · 100 percent of the s(θ̂ j) exceed the

value. Of course, R must be a very large number if g−K is large, in order to

determine the critical value with precision. This sort of test has been found to

have quite good small sample properties.
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18.10 Other estimators interpreted as GMM estimators

18.10.1 OLS with heteroscedasticity of unknown form

Example 62 White’s heteroscedastic consistent varcov estimator for OLS.

Suppose y = Xβ0 + ε, where ε ∼ N(0,Σ), Σ a diagonal matrix.

• The typical approach is to parameterize Σ = Σ(σ), where σ is a finite dimen-

sional parameter vector, and to estimate β and σ jointly (feasible GLS). This

will work well if the parameterization of Σ is correct.

• If we’re not confident about parameterizing Σ, we can still estimate β consis-

tently by OLS. However, the typical covariance estimator V (β̂) = (X′X)−1 σ̂2

will be biased and inconsistent, and will lead to invalid inferences.

By exogeneity of the regressors xt (a K×1 column vector) we have E(xtεt) = 0,which

suggests the moment condition

mt(β) = xt
(
yt −x′tβ

)
.

In this case, we have exact identification ( K parameters and K moment conditions).

We have

m(β) = 1/n∑
t

mt = 1/n∑
t

xtyt −1/n∑
t

xtx′tβ.

For any choice of W, m(β) will be identically zero at the minimum, due to exact iden-

tification. That is, since the number of moment conditions is identical to the number

of parameters, the foc imply that m(β̂)≡ 0 regardless of W. There is no need to use the

“optimal” weighting matrix in this case, an identity matrix works just as well for the
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purpose of estimation. Therefore

β̂ =

(
∑
t

xtx′t

)−1

∑
t

xtyt = (X′X)−1X′y,

which is the usual OLS estimator.

The GMM estimator of the asymptotic varcov matrix is
(

D̂∞Ω̂−1D̂∞
′)−1

. Recall

that D̂∞ is simply ∂
∂θm′ (θ̂

)
. In this case

D̂∞ = −1/n∑
t

xtx′t = −X′X/n.

Recall that a possible estimator of Ω is

Ω̂ = Γ̂0 +
n−1

∑
v=1

(
Γ̂v + Γ̂′

v

)
.

This is in general inconsistent, but in the present case of nonautocorrelation, it simpli-

fies to

Ω̂ = Γ̂0

which has a constant number of elements to estimate, so information will accumulate,

and consistency obtains. In the present case

Ω̂ = Γ̂0 = 1/n

(
n

∑
t=1

m̂tm̂
′
t

)

= 1/n

[
n

∑
t=1

xtx′t
(

yt −x′t β̂
)2
]

= 1/n

[
n

∑
t=1

xtx′t ε̂
2
t

]

=
X′ÊX

n
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where Ê is an n× n diagonal matrix with ε̂2
t in the position t, t (see the GAUSS com-

mand diagrv to achieve this).

Therefore, the GMM varcov. estimator, which is consistent, is

V̂
(√

n
(

β̂−β
))

=

{(
−X′X

n

)(
X′ÊX

n

−1
)(

−X′X
n

)}−1

=

(
X′X

n

)−1(X′ÊX
n

)(
X′X

n

)−1

This is the varcov estimator that White (1980) arrived at in an influential article. This

estimator is consistent under heteroscedasticity of an unknown form. If there is au-

tocorrelation, the Newey-West estimator can be used to estimate Ω - the rest is the

same.

18.10.2 Weighted Least Squares

Consider the previous example of a linear model with heteroscedasticity of unknown

form:

y = Xβ0 + ε

ε ∼ N(0,Σ)

where Σ is a diagonal matrix.

Now, suppose that the form of Σ is known, so that Σ(θ0) is a correct parametric

specification (which may also depend upon X). In this case, the GLS estimator is

β̃ =
(
X′Σ−1X

)−1
X′Σ−1y)
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This estimator can be interpreted as the solution to the K moment conditions

m(β̃) = 1/n∑
t

xtyt

σt(θ0)
−1/n∑

t

xtx′t
σt(θ0)

β̃ ≡ 0.

That is, the GLS estimator in this case has an obvious representation as a GMM estima-

tor. With autocorrelation, the representation exists but it is a little more complicated.

Nevertheless, the idea is the same. There are a few points:

• The (feasible) GLS estimator is known to be asymptotically efficient in the class

of linear asymptotically unbiased estimators (Gauss-Markov).

• This means that it is more efficient than the above example of OLS with White’s

heteroscedastic consistent covariance, which is an alternative GMM estimator.

• This means that the choice of the moment conditions is important to achieve

efficiency.

18.10.3 2SLS

Consider the linear model

yt = z′tβ+ εt,

or

y = Zβ+ ε

using the usual construction, where β is K×1 and εt is i.i.d. Suppose that this equation

is one of a system of simultaneous equations, so that zt contains both endogenous and

exogenous variables. Suppose that xt is the vector of all exogenous and predetermined

variables that are uncorrelated with εt (suppose that xt is r×1).
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• Define Ẑ as the vector of predictions of Z when regressed upon X, e.g., Ẑ =

X(X′X)−1 X′Z

Ẑ = X
(
X′X

)−1 X′Z

• Since Ẑ is a linear combination of the exogenous variables x, ẑt must be un-

correlated with ε. This suggests the K-dimensional moment condition mt(β) =

ẑt (yt − z′tβ) and so

m(β) = 1/n∑
t

ẑt
(
yt − z′tβ

)
.

• Since we have K parameters and K moment conditions, the GMM estimator will

set m identically equal to zero, regardless of W, so we have

β̂ =

(
∑
t

ẑtz′t

)−1

∑
t

(ẑtyt) =
(
Ẑ′Z
)−1

Ẑ′y

This is the standard formula for 2SLS. We use the exogenous variables and the reduced

form predictions of the endogenous variables as instruments, and apply IV estimation.

See Hamilton pp. 420-21 for the varcov formula (which is the standard formula for

2SLS), and for how to deal with εt heterogeneous and dependent (basically, just use the

Newey-West or some other consistent estimator of Ω, and apply the usual formula).

Note that εt dependent causes lagged endogenous variables to loose their status as

legitimate instruments.

293



18.10.4 Nonlinear simultaneous equations

GMM provides a convenient way to estimate nonlinear systems of simultaneous equa-

tions. We have a system of equations of the form

y1t = f1(zt ,θ0
1)+ ε1t

y2t = f2(zt ,θ0
2)+ ε2t

...

yGt = fG(zt ,θ0
G)+ εGt,

or in compact notation

yt = f (zt ,θ0)+ εt,

where f (·) is a G -vector valued function, and θ0 = (θ0′
1 ,θ0′

2 , · · · ,θ0′
G)′.

We need to find an Ai × 1 vector of instruments xit , for each equation, that are

uncorrelated with εit . Typical instruments would be low order monomials in the ex-

ogenous variables in zt , with their lagged values. Then we can define the
(
∑G

i=1 Ai
)
×1

orthogonality conditions

mt(θ) =




(y1t − f1(zt ,θ1))x1t

(y2t − f2(zt ,θ2))x2t

...

(yGt − fG(zt ,θG))xGt




.

• A note on identification: selection of instruments that ensure identification is a

non-trivial problem.

• A note on efficiency: the selected set of instruments has important effects on the

efficiency of estimation. Unfortunately there is little theory offering guidance on
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what is the optimal set. More on this later.

18.10.5 Maximum likelihood

In the introduction we argued that ML will in general be more efficient than GMM

since ML implicitly uses all of the moments of the distribution while GMM uses

a limited number of moments. Actually, a distribution with P parameters can be

uniquely characterized by P moment conditions. However, some sets of P moment

conditions may contain more information than others, since the moment conditions

could be highly correlated. A GMM estimator that chose an optimal set of P moment

conditions would be fully efficient. Here we’ll see that the optimal moment conditions

are simply the scores of the ML estimator.

Let yt be a G -vector of variables, and let Yt = (y′1,y
′
2, ...,y

′
t)
′. Then at time t, Yt−1

has been observed (refer to it as the information set, since we assume the conditioning

variables have been selected to take advantage of all useful information). The likeli-

hood function is the joint density of the sample:

L(θ) = f (y1,y2, ...,yn,θ)

which can be factored as

L(θ) = f (yn|Yn−1,θ) · f (Yn−1,θ)

and we can repeat this to get

L(θ) = f (yn|Yn−1,θ) · f (yn−1|Yn−2,θ) · ... · f (y1).
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The log-likelihood function is therefore

lnL(θ) =
n

∑
t=1

ln f (yt |Yt−1,θ).

Define

mt(Yt ,θ) ≡ Dθ ln f (yt |Yt−1,θ)

as the score of the tth observation. It can be shown that, under the regularity condi-

tions, that the scores have conditional mean zero when evaluated at θ0 (see notes to

Introduction to Econometrics):

E{mt(Yt ,θ0)|Yt−1} = 0

so one could interpret these as moment conditions to use to define a just-identified

GMM estimator ( if there are K parameters there are K score equations). The GMM

estimator sets

1/n
n

∑
t=1

mt(Yt , θ̂) = 1/n
n

∑
t=1

Dθ ln f (yt |Yt−1, θ̂) = 0,

which are precisely the first order conditions of MLE. Therefore, MLE can be inter-

preted as a GMM estimator. The GMM varcov formula is AV (θ̂) =
(
D∞Ω−1D′

∞
)−1

(note, AV means asymptotic variance, by which I mean limV
(√

n
(
θ̂−θ

))
.

Consistent estimates of variance components are as follows

• D∞

D̂∞ =
∂

∂θ′
m(Yt , θ̂) = 1/n

n

∑
t=1

D2
θ ln f (yt |Yt−1, θ̂)

• Ω
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It is important to note that mt and mt−s, s > 0 are both conditionally and uncondi-

tionally uncorrelated. Conditional uncorrelation follows from the fact that mt−s

is a function of Yt−s, which is in the information set at time t. Unconditional

uncorrelation follows from the fact that conditional uncorrelation hold regard-

less of the realization of Yt−1, so marginalizing with respect to Yt−1 preserves

uncorrelation (see Davidson and MacKinnon, pg. 262-3 for more detail). The

fact that the scores are serially uncorrelated implies that Ω can be estimated by

the estimator of the 0th autocovariance of the moment conditions:

Ω̂ = 1/n
n

∑
t=1

mt(Yt , θ̂)mt(Yt , θ̂)′ = 1/n
n

∑
t=1

[
Dθ ln f (yt |Yt−1, θ̂)

][
Dθ ln f (yt |Yt−1, θ̂)

]′

Recall from study of ML estimation that the information matrix equality states that

E
{[

Dθ ln f (yt |Yt−1,θ0)
][

Dθ ln f (yt |Yt−1,θ0)
]′}

= −E
{

D2
θ ln f (yt |Yt−1,θ0)

}

(i.e., the expectation of the outer product of the gradient is equal to the negative of

the expectation of the Hessian. This is a version of the information matrix inequality

applied to the individual contributions to the log-likelihood function. It implies the

usual form of the information matrix equality, see Davidson and MacKinnon, pg. 264).

This result implies that we can estimate AV (θ̂) in any of three ways:

• The full GMM version:

�

AV (θ̂) = n





{
∑n

t=1 D2
θ ln f (yt |Yt−1, θ̂)

}
·

{
∑n

t=1

[
Dθ ln f (yt |Yt−1, θ̂)

][
Dθ ln f (yt |Yt−1, θ̂)

]′}−1
·

{
∑n

t=1 D2
θ ln f (yt |Yt−1, θ̂)

}





−1

• or the inverse of the negative of the Hessian (since the middle and last term
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cancel, except for a minus sign):

�

AV (θ̂) =

[
−1/n

n

∑
t=1

D2
θ ln f (yt |Yt−1, θ̂)

]−1

,

• or the inverse of the outer product of the gradient (since the middle and last

cancel except for a minus sign, and the first term converges to minus the inverse

of the middle term, which is still inside the overall inverse)

�

AV (θ̂) =

{
1/n

n

∑
t=1

[
Dθ ln f (yt |Yt−1, θ̂)

][
Dθ ln f (yt |Yt−1, θ̂)

]′
}−1

Asymptotically, if the model is correctly specified, all of these forms converge to

the same limit. In small samples they will differ. In particular, there is evidence that the

outer product of the gradient formula does not perform very well in small samples (see

Davidson and MacKinnon, pg. 477). White’s Information matrix test (Econometrica,

1982) is based upon comparing the two ways to estimate the information matrix: outer

product of gradient or negative of the Hessian. If they differ by too much, this is

evidence of misspecification of the model.

18.11 Application: Nonlinear rational expectations

Readings: Hansen and Singleton, 1982∗; Tauchen, 1986

Though GMM estimation has many applications, application to rational expecta-

tions models is elegant, since theory directly suggests the moment conditions. Hansen

and Singleton’s 1982 paper is also a classic worth studying in itself. Though I strongly

recommend reading the paper, I’ll use a simplified model with similar notation to

Hamilton’s.

• We assume a representative consumer maximizes expected discounted utility

over an infinite horizon. Utility is temporally additive, and the expected utility
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hypothesis holds. The future consumption stream is the stochastic sequence

{ct}∞
t=0 . The objective function at time t is the discounted expected utility

∞

∑
s=0

βsE (u(ct+s)|It) . (27)

• The parameter β is between 0 and 1, and reflects discounting. It is the informa-

tion set at time t, and includes the all realizations of random variables indexed t

and earlier.

• Suppose the consumer can invest in an assets. A dollar invested in the asset

yields a gross return

(1+ rt+1) =
pt+1 +dt+1

pt

where pt is the price and dt is the dividend in period t. The price of ct is normal-

ized to 1.

• Net rates of return rt+1 are not known in period t.

• Investment at time t may be worthwhile since it will lead to the possibility of

higher consumption in later periods. However, current investment reduces cur-

rent consumption.

A partial set of necessary conditions for utility maximization have the form:

u′(ct) = βE
{
(1+ rt+1)u′(ct+1)|It

}
. (28)

To see that the condition is necessary, suppose that the lhs < rhs. Then by reduc-

ing current consumption marginally would cause equation 27 to drop by u′(ct), since

there is no discounting of the current period. At the same time, the marginal reduc-

tion in consumption finances investment, which has gross return (1+ rt+1) , which
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could finance consumption in period t +1. This increase in consumption would cause

the objective function to increase by βE {(1+ rt+1)u′(ct+1)|It} . Therefore, unless the

condition holds, the utility function is not maximized.

• To use this we need to choose the functional form of utility. A constant relative

risk aversion form is

u(ct) =
cγ

t

γ

where 1− γ is the coefficient of relative risk aversion (γ < 1). With this form,

u′(ct) = cγ−1
t

so the foc are

cγ−1
t = βE

{
(1+ rt+1)cγ−1

t+1 |It
}

While it is true that

E
(

cγ−1
t −β

{
(1+ rt+1)cγ−1

t+1 |It
})

= 0

so that we could use this to define moment conditions, it is unlikely that ct is stationary,

even though it is in real terms, and our theory requires stationarity. To solve this, divide

though by cγ−1
t

1−βE

{
(1+ rt+1)

(
ct+1

ct

)γ−1

|It
}

= 0

(note that ct can be passed though the conditional expectation since ct is chosen based

only upon information available in time t).

• Suppose that xt is a vector of variables drawn from the information set It . We

300



can use the necessary conditions to form the expressions

[
1−β(1+ rt+1)

(
ct+1
ct

)γ−1
]

xt ≡ mt(θ)

• θ represents β and γ.

• Therefore, the above expression may be interpreted as a moment condition which

can be used for GMM estimation of the parameters θ0.

• In principle, we could use a very large number of moment conditions in estima-

tion, since any current or lagged variable could be used in xt .

• Note that at time t, mt−s has been observed, and is therefore an element of the

information set. By rat. exp., the autocovariances of the moment conditions

other than Γ0 should be zero. The optimal weighting matrix is therefore the

inverse of the variance of the moment conditions:

Ω = E
[
m(θ0)m(θ0)′

]

which can be consistently estimated by

Ω̂ = 1/n
n

∑
t=1

mt(θ̂)mt(θ̂)′

As before, this estimate depends on an initial consistent estimate of θ, which can be

obtained by setting the weighting matrix W arbitrarily (to an identity matrix, for ex-

ample). After obtaining θ̂, we then minimize

s(θ) = m(θ)′Ω̂−1m(θ).

This process can be iterated, e.g., use the new estimate to re-estimate Ω, use this to
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estimate θ0, and repeat until the estimates don’t change.

• This whole approach relies on the very strong assumption that equation 28 holds

without error. Supposing agents were heterogeneous, this wouldn’t be reason-

able. If there were an error term here, it could potentially be autocorrelated,

which would no longer allow any variable in the information set to be used as an

instrument..

• Supposing that the representative agent approach is ok, one might think that a

large number of instruments should be used to increase the number of moment

conditions. This is in fact not the case, as has been seen in Monte Carlo studies

(Tauchen, JBES, 1986). The reason for poor performance when using many

instruments is that the estimate of Ω becomes very imprecise.

18.12 Problems

1. Perform GMM estimation of the rational expectations model described above

using the data in the file gmmdata, located , on the volcano server. The columns

of this data file are c, p, and d, in that order. There are 95 observations (source:

Tauchen, JBES, 1986). Use as instruments lags of c and 1+ r.

• Use lags of orders 1, 2, 3 and 4.

• Iterate the estimation of θ = β,γ and Ω to convergence.

• Comment on the results. Are the results sensitive to the set of instruments

used? (Look at Ω̂ as well as θ̂. Are these good instruments? Are the instru-

ments highly correlated with one another?
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19 Quasi-ML

Quasi-ML is the estimator one obtains when a misspecified probability model is used

to calculate an “ML” estimator.

Given a sample of size n of a random vector y and a vector of conditioning vari-

ables x, the suppose the joint density of Y =

(
y1 . . . yn

)
conditional on X =

(
x1 . . . xn

)
is a member of the parametric family pY (Y|X,ρ), ρ ∈ Ξ. The true

joint density is associated with the vector ρ0 :

pY (Y|X,ρ0).

As long as the marginal density of X doesn’t depend on ρ0, this conditional density

fully characterizes the random characteristics of samples: e.g., it fully describes the

probabilistically important features of the d.g.p. The likelihood function is just this

density evaluated at other values ρ

L(Y|X,ρ) = pY (Y|X,ρ),ρ ∈ Ξ.

• Let Yt−1 =

(
y1 . . . yt−1

)
, Y0 = 0, and let Xt =

(
x1 . . . xt

)
The like-

lihood function, taking into account possible dependence of observations, can

be written as

L(Y|X,ρ) =
n

∏
t=1

pt(yt |Yt−1,Xt ,ρ)

≡
n

∏
t=1

pt(ρ)
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• The average log-likelihood function is:

sn(ρ) =
1
n

lnL(Y|X,ρ) =
1
n

n

∑
t=1

ln pt(ρ)

• Suppose that we do not have knowledge of the family of densities pt(ρ). Mistak-

enly, we may assume that the conditional density of yt is a member of the family

ft(yt |Yt−1,Xt ,θ), θ ∈ Θ, where there is no θ0 such that ft(yt|Yt−1,Xt,θ0) =

pt(yt |Yt−1,Xt ,ρ0),∀t (this is what we mean by “misspecified”).

• This setup allows for heterogeneous time series data, with dynamic misspecifi-

cation.

The QML estimator is the argument that maximizes the misspecified average log like-

lihood, which we refer to as the quasi-log likelihood function. This objective function

is

sn(θ) =
1
n

n

∑
t=1

ln ft(yt |Yt−1,Xt ,θ0)

≡ 1
n

n

∑
t=1

ln ft(θ)

and the QML is

θ̂n = argmax
Θ

sn(θ)

A SLLN for dependent sequences applies (we assume), so that

sn(θ)
a.s.→ lim

n→∞
E

1
n

n

∑
t=1

ln ft(θ) ≡ s̄(θ)

We assume that this can be strengthened to uniform convergence, a.s., following the
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previous arguments. The “pseudo-true” value of θ is the value that maximizes s̄(θ):

θ0 = argmax
Θ

s̄(θ)

Given assumptions so that theorem 55 is applicable, we obtain

lim
n→∞

θ̂n = θ0,a.s.

An example of sufficient conditions for consistency are

• Θ is compact

– sn(θ) is continuous and converges pointwise almost surely to s̄(θ) (this

means that s̄(θ) will be continuous, and this combined with compactness

of Θ means s̄(θ) is uniformly continuous).

– θ0 is a unique global maximizer. A stronger version of this assumption

that allows for asymptotic normality is that D2
θ s̄(θ) exists and is negative

definite in a neighborhood of θ0.

• Applying the asymptotic normality theorem,

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

where

J∞(θ0) = lim
n→∞

ED2
θsn(θ0)

and

I∞(θ0) = lim
n→∞

Var
√

nDθsn(θ0).

305



• Note that asymptotic normality only requires that the additional assumptions

regarding J and I hold in a neighborhood of θ0 for J and at θ0, for I , not

throughout Θ. In this sense, asymptotic normality is a local property.

19.0.1 Consistent Estimation of Variance Components

Consistent estimation of J∞(θ0) is straightforward. Assumption (b) of Theorem 58

implies that

Jn(θ̂n) =
1
n

n

∑
t=1

D2
θ ln ft(θ̂n)

a.s.→ lim
n→∞

E 1
n

n

∑
t=1

D2
θ ln ft(θ0) = J∞(θ0).

That is, just calculate the Hessian using the estimate θ̂n in place of θ0.

Consistent estimation of I∞(θ0) is more difficult, and may be impossible.

• Notation: Let gt ≡ Dθ ft(θ0)

We need to estimate

I∞(θ0) = lim
n→∞

Var
√

nDθsn(θ0)

= lim
n→∞

Var
√

n
1
n

n

∑
t=1

Dθ ln ft(θ0)

= lim
n→∞

1
n

Var
n

∑
t=1

gt

= lim
n→∞

1
n

E

{(
n

∑
t=1

(gt −Egt)

)(
n

∑
t=1

(gt −Egt)

)′}

This is going to contain a term

lim
n→∞

1
n

n

∑
t=1

(Egt)(Egt)
′

which will not tend to zero, in general. This term is not consistently estimable in
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general, since it requires calculating an expectation using the true density under the

d.g.p., which is unknown.

• There are important cases where I∞(θ0) is consistently estimable. For example,

suppose that the data come from a random sample (i.e., they are iid). This would

be the case with cross sectional data, for example. (Note: we have that the

joint distribution of (yt ,xt) is identical. This does not imply that the conditional

density f (yt |xt) is identical).

• With random sampling, the limiting objective function is simply

s̄(θ0) = EX E0 ln f (y|x,θ0)

where E0 means expectation of y|x and EX means expectation respect to the

marginal density of x.

• By the requirement that the limiting objective function be maximized at θ0 we

have

DθEX E0 ln f (y|x,θ0) = Dθ s̄(θ0) = 0

• The dominated convergence theorem allows switching the order of expectation

and differentiation, so

DθEX E0 ln f (y|x,θ0) = EX E0Dθ ln f (y|x,θ0) = 0

The CLT implies that

1√
n

n

∑
t=1

Dθ ln f (y|x,θ0)
d→ N(0,I∞(θ0)).
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That is, it’s not necessary to subtract the individual means, since they are zero.

Given this, and due to independent observations, a consistent estimator is

Î =
1
n

n

∑
t=1

Dθ ln ft(θ̂)Dθ′ ln ft(θ̂)

This is an important case where consistent estimation of the covariance matrix is pos-

sible. Other cases exist, even for dynamically misspecified time series models.
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20 Nonlinear least squares (NLS)

Readings: Davidson and MacKinnon, Ch. 2∗ and 5∗; Gallant, Ch. 1

20.1 Introduction and definition

Nonlinear least squares (NLS) is a means of estimating the parameter of the model

yt = f (xt ,θ0)+ εt .

• In general, εt will be heteroscedastic and autocorrelated, and possibly nonnor-

mally distributed. However, dealing with this is exactly as in the case of linear

models, so we’ll just treat the iid case here,

εt ∼ iid(0,σ2)

If we stack the observations vertically, defining

y = (y1,y2, ...,yn)
′

f = ( f (x1,θ), f (x1,θ), ..., f (x1,θ))′

and

ε = (ε1,ε2, ...,εn)
′

we can write the n observations as

y = f(θ)+ ε
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Using this notation, the NLS estimator can be defined as

θ̂ ≡ argmin
Θ

sn(θ) =
1
n

[y− f(θ)]′ [y− f(θ)] =
1
n
‖ y− f(θ) ‖2

• The estimator minimizes the weighted sum of squared errors, which is the same

as minimizing the Euclidean distance between y and f(θ).

The objective function can be written as

sn(θ) =
1
n

[
y′y−2y′f(θ)+ f(θ)′f(θ)

]
,

which gives the first order conditions

−
[

∂
∂θ

f(θ̂)′
]

y+

[
∂

∂θ
f(θ̂)′

]
f(θ̂) ≡ 0.

Define the n×K matrix

F(θ̂) ≡ Dθ′f(θ̂). (29)

In shorthand, use F̂ in place of F(θ̂). Using this, the first order conditions can be written

as

−F̂′y+ F̂′f(θ̂) ≡ 0,

or

F̂′ [y− f(θ̂)
]
≡ 0. (30)

This bears a good deal of similarity to the f.o.c. for the linear model - the derivative of

the prediction is orthogonal to the prediction error. If f(θ) = Xθ, then F̂ is simply X,

so the f.o.c. (with spherical errors) simplify to

X′y−X′Xβ = 0,
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the usual 0LS f.o.c.

We can interpret this geometrically: INSERT drawings of geometrical depiction of

OLS and NLS (see Davidson and MacKinnon, pgs. 8,13 and 46).

• Note that the nonlinearity of the manifold leads to potential multiple local max-

ima, minima and saddlepoints: the objective function sn(θ) is not necessarily

well-behaved and may be difficult to minimize.

20.2 Identification

As before, identification can be considered conditional on the sample, and asymp-

totically. The condition for asymptotic identification is that sn(θ) tend to a limiting

function s∞(θ) such that s∞(θ0) < s∞(θ), ∀θ 6= θ0. This will be the case if s∞(θ0) is

strictly convex at θ0, which requires that D2
θs∞(θ0) be positive definite. Consider the

objective function:

sn(θ) =
1
n

n

∑
t=1

[yt − f (xt ,θ)]2

=
1
n

n

∑
t=1

[
f (xt,θ0)+ εt − ft(xt ,θ)

]2

=
1
n

n

∑
t=1

[
ft(θ0)− ft(θ)

]2
+

1
n

n

∑
t=1

(εt)
2

− 2
n

n

∑
t=1

[
ft(θ0)− ft(θ)

]
εt

• As in example 16.3, which illustrated the consistency of extremum estimators

using OLS, we conclude that the second term will converge to a constant which

does not depend upon θ.

• A LLN can be applied to the third term to conclude that it converges pointwise

to 0, as long as f(θ) and ε are uncorrelated.
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• Next, pointwise convergence needs to be stregnthened to uniform almost sure

convergence. There are a number of possible assumptions one could use. Here,

we’ll just assume it holds.

• Turning to the first term, we’ll assume a pointwise law of large numbers applies,

so
1
n

n

∑
t=1

[
ft(θ0)− ft(θ)

]2 a.s.→
� [

f (z,θ0)− f (z,θ)
]2

dµ(z), (31)

where µ(x) is the distribution function of x. In many cases, f (x,θ) will be bounded

and continuous, for all θ ∈ Θ, so strengthening to uniform almost sure con-

vergence is immediate. For example if f (x,θ) = [1+ exp(−xθ)]−1 , f : ℜK →

(0,1) , a bounded range, and the function is continuous in θ.

Given these results, it is clear that a minimizer is θ0. When considering identification

(asymptotic), the question is whether or not there may be some other minimizer. A

local condition for identification is that

∂2

∂θ∂θ′
s∞(θ) =

∂2

∂θ∂θ′

� [
f (x,θ0)− f (x,θ)

]2
dµ(x)

be positive definite at θ0. Evaluating this derivative, we obtain (after a little work)

∂2

∂θ∂θ′

� [
f (x,θ0)− f (x,θ)

]2
dµ(x)

∣∣∣∣
θ0

= 2
� [

Dθ f (z,θ0)′
][

Dθ′ f (z,θ0)
]′

dµ(z)

the expectation of the outer product of the gradient of the regression function evaluated

at θ0. (Note: the uniform boundedness we have already assumed allows passing the

derivative through the integral, by the dominated convergence theorem.) This matrix

will be positive definite (wp1) as long as the gradient vector is of full rank (wp1). The

tangent space to the regression manifold must span a K -dimensional space if we are
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to consistently estimate a K -dimensional parameter vector. This is analogous to the

requirement that there be no perfect colinearity in a linear model. This is a necessary

condition for identification. Note that the LLN implies that the above expectation is

equal to

J∞(θ0) = 2limE
F′F
n

20.3 Consistency

We simply assume that the conditions of Theorem 55 hold, so the estimator is con-

sistent. Given that the strong stochastic equicontinuity conditions hold, as discussed

above, and given the above identification conditions an a compact estimation space (the

closure of the parameter space Θ), the consistency proof’s assumptions are satisfied..

20.4 Asymptotic normality

As in the case of GMM, we also simply assume that the conditions for asymptotic

normality as in Theorem 58 hold. The only remaining problem is to determine the form

of the asymptotic variance-covariance matrix. Recall that the result of the asymptotic

normality theorem is

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1] ,

where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′ sn(θ) evaluated at θ0, and

n
[
Dθsn(θ0)

][
Dθsn(θ0)

]′ a.s.→ I∞(θ0),
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The objective function is

sn(θ) =
1
n

n

∑
t=1

[yt − f (xt ,θ)]2

So

Dθsn(θ) = −2
n

n

∑
t=1

[yt − f (xt ,θ)]Dθ f (xt ,θ).

Evaluating at θ0,

Dθsn(θ0) = −2
n

n

∑
t=1

εtDθ f (xt,θ0).

With this we obtain

n
[
Dθsn(θ0)

][
Dθsn(θ0)

]′
=

4
n

[
n

∑
t=1

εtDθ f (xt ,θ0)

][
n

∑
t=1

εtDθ f (xt ,θ0)

]′

Noting that

n

∑
t=1

εtDθ f (xt ,θ0) =
∂

∂θ
[
f(θ0)

]′ ε

= F′ε

we can write the above as

n
[
Dθsn(θ0)

][
Dθsn(θ0)

]′
=

4
n

F′εε′F

This converges almost surely to its expectation, following a LLN

I∞(θ0) = 4σ2 limE F′F
n
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We’ve already seen that

J∞(θ0) = 2limE F′F
n

,

where the expectation is with respect to the joint density of x and ε. Combining these

expressions for J∞(θ0) and I∞(θ0), and the result of the asymptotic normality theorem,

we get
√

n
(
θ̂−θ0) d→ N

(
0,

(
limE F′F

n

)−1

σ2

)
.

We can consistently estimate the variance covariance matrix using

(
F̂′F̂
n

)−1

σ̂2, (32)

where F̂ is defined as in equation 29 and

σ̂2 =

[
y− f(θ̂)

]′ [
y− f(θ̂)

]

n
,

the obvious estimator. Note the close correspondence to the results for the linear

model.

20.5 Example: The Poisson model for count data

Suppose that yt conditional on xt is independently distributed Poisson. A Poisson

random variable is a count data variable, which means it can take the values {0,1,2,...}.

This sort of model has been used to study visits to doctors per year, number of patents

registered by businesses per year, etc.

The Poisson density is

f (yt) =
exp(−λt)λ

yt
t

yt!
,yt ∈ {0,1,2, ...}.
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The mean of yt is λt , as is the variance. Note that λt must be positive. Suppose that the

true mean is

λ0
t = exp(x′tβ

0),

which enforces the positivity of λt . Suppose we estimate β0 by nonlinear least squares:

β̂ = argminsn(β) =
1
T

n

∑
t=1

(
yt − exp(x′tβ)

)2

We can write

sn(β) =
1
T

n

∑
t=1

(
exp(x′tβ

0 + εt − exp(x′tβ)
)2

=
1
T

n

∑
t=1

(
exp(x′tβ

0 − exp(x′tβ)
)2

+
1
T

n

∑
t=1

ε2
t +2

1
T

n

∑
t=1

εt
(
exp(x′tβ

0 − exp(x′tβ)
)

The last term has expectation zero since the assumption that E(yt |xt) = exp(x′tβ0)

implies that E (εt|xt) = 0, which in turn implies that functions of xt are uncorrelated

with εt . Applying a strong LLN, and noting that the obsective function is continuous

on a compact parameter space, we get

s∞(β) = Ex
(
exp(x′β0 − exp(x′β)

)2
+Ex exp(x′β0)

where the last term comes from the fact that the conditional variance of ε is the same

as the variance of y. This function is clearly minimized at β = β0, so the NLS estimator

is consistent as long as identification holds.

Exercise 63 Determine the limiting distribution of
√

n
(

β̂−β0
)

. This means finding

the the specific forms of ∂2

∂β∂β′ sn(β), J (β0),
∂sn(β)

∂β

∣∣∣ , and I (β0). Again, use a CLT as

needed, no need to verify that it can be applied.
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20.6 The Gauss-Newton algorithm

Readings: Davidson and MacKinnon, Chapter 6, pgs. 201-207∗.

The Gauss-Newton optimization technique is specifically designed for nonlinear

least squares. The idea is to linearize the nonlinear model, rather than the objective

function. The model is

y = f(θ0)+ ε.

At some θ in the parameter space, not equal to θ0, we have

y = f(θ)+ν

where ν is a combination of the fundamental error term ε and the error due to evaluat-

ing the regression function at θ rather than the true value θ0. Take a first order Taylor’s

series approximation around a point θ1 :

y = f(θ1)+
[
Dθ′f

(
θ1)](θ−θ1)+ν+ approximationerror.

This can be written as

z = F(θ1)b+ω,

where, as above, F(θ1) ≡ Dθ′f(θ1) is the n×K matrix of derivatives of the regres-

sion function, evaluated at θ1, and ω is ν plus approximation error from the truncated

Taylor’s series.

• Note that F is known, given θ1.

• Similarly, z ≡ y− f(θ1), which is also known.

• The other new element here is b ≡ (θ− θ1). Note that one could estimate b
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simply by performing OLS on the above equation.

• Given b̂, we calculate a new round estimate of θ0 as θ2 = b̂+θ1. With this, take

a new Taylor’s series expansion around θ2 and repeat the process. Stop when

b̂ = 0 (to within a specified tolerance).

To see why this might work, consider the above approximation, but evaluated at the

NLS estimator:

y = f(θ̂)+F(θ̂)
(
θ− θ̂

)
+ω

The OLS estimate of b ≡ θ− θ̂ is

b̂ =
(
F̂′F̂
)−1

F̂′ [y− f(θ̂)
]
.

This must be zero, since

F̂′ [y− f(θ̂)
]
≡ 0

by definition of the NLS estimator (these are the normal equations as in equation 30,

Since b̂ ≡ 0 when we evaluate at θ̂, updating would stop.

• The Gauss-Newton method doesn’t require second derivatives, as does the Newton-

Raphson method, so it’s faster.

• The varcov estimator, as in equation 32 is simple to calculate, since we have F̂

as a by-product of the estimation process (i.e., it’s just the last round “regressor

matrix”). In fact, a normal OLS program will give the NLS varcov estimator

directly, since it’s just the OLS varcov estimator from the last iteration.

• The method can suffer from convergence problems since F(θ)′F(θ), may be very

nearly singular, even with an asymptotically identified model, especially if θ is

318



very far from θ̂. Consider the example

y = β1 +β2xtβ3 + εt

When evaluated at β2 ≈ 0, β3 has virtually no effect on the NLS objective func-

tion, so F will have rank that is “essentially” 2, rather than 3. In this case, F′F

will be nearly singular, so (F′F)−1 will be subject to large roundoff errors.

20.7 Application: Limited dependent variables and sample selec-

tion

Readings: Davidson and MacKinnon, Ch. 15∗ (a quick reading is sufficient), J. Heck-

man, “Sample Selection Bias as a Specification Error”, Econometrica, 1979 (This is a

classic article, not required for reading, and which is a bit out-dated. Nevertheless it’s

a good place to start if you encounter sample selection problems in your research).

Sample selection is a common problem in applied research. The problem occurs

when observations used in estimation are sampled non-randomly, according to some

selection scheme.

20.7.1 Example: Labor Supply

Labor supply of a person is a positive number of hours per unit time supposing the

offer wage is higher than the reservation wage, which is the wage at which the person

prefers not to work. The model (very simple, with t subscripts suppressed):

• Characteristics of individual: x

• Latent labor supply: s∗ = x′β+ω

• Offer wage: wo = z′γ+ν
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• Reservation wage: wr = q′δ+η

Write the wage differential as

w∗ =
(
z′γ+ν

)
−
(
q′δ+η

)

≡ r′θ+ ε

We have the set of equations

s∗ = x′β+ω

w∗ = r′θ+ ε.

Assume that 


ω

ε


∼ N







0

0


 ,




σ2 ρσ

ρσ 1





 .

We assume that the offer wage and the reservation wage, as well as the latent variable

s∗ are unobservable. What is observed is

w = 1 [w∗ > 0]

s = ws∗.

In other words, we observe whether or not a person is working. If the person is work-

ing, we observe labor supply, which is equal to latent labor supply, s∗. Otherwise,

s = 0 6= s∗. Note that we are using a simplifying assumption that individuals can freely

choose their weekly hours of work.

Suppose we estimated the model

s∗ = x′β+ residual
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using only observations for which s > 0. The problem is that these observations are

those for which w∗ > 0, or equivalently, −ε < r′θ and

E
[
ω|− ε < r′θ

]
6= 0,

since ε and ω are dependent. Furthermore, this expectation will in general depend on x

since elements of x can enter in r. Because of these two facts, least squares estimation

is biased and inconsistent.

Consider more carefully E [ω|− ε < r′θ] . Given the joint normality of ω and ε, we

can write (see for example Spanos Statistical Foundations of Econometric Modelling,

pg. 122)

ω = ρσε+η,

where η has mean zero and is independent of ε. With this we can write

s∗ = x′β+ρσε+η.

If we condition this equation on −ε < r′θ we get

s = x′β+ρσE(ε|− ε < r′θ)+η.

• A useful result is that for

z ∼ N(0,1)

E(z|z > z∗) =
φ(z∗)

Φ(−z∗)
,

where φ(·) and Φ(·) are the standard normal density and distribution function,
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respectively. The quantity on the RHS above is known as the inverse Mill’s ratio:

IMR(z∗) =
φ(z∗)

Φ(−z∗)

With this we can write

s = x′β+ρσ
φ(r′θ)

Φ(r′θ)
+η (33)

≡
[

x′ φ(r′θ)
Φ(r′θ)

]



β

ζ


+η. (34)

where ζ = ρσ. The error term η has conditional mean zero, and is uncorrelated with

the regressors x′ φ(r′θ)
Φ(r′θ)

. At this point, we can estimate the equation by NLS.

• Heckman showed how one can estimate this in a two step procedure where first

θ is estimated, then equation 34 is estimated by least squares using the estimated

value of θ to form the regressors. This is inefficient and estimation of the co-

variance is a tricky issue. It is probably easier (and more efficient) just to do

MLE.

• The model presented above depends strongly on joint normality. There exist

many alternative models which weaken the maintained assumptions. It is pos-

sible to estimate consistently without distributional assumptions. See Ahn and

Powell, Journal of Econometrics, 1994.
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21 Examples: demand for health care

Demand for health care is usually thought of a a derived demand: health care is an

input to a home production function that produces health, and health is an argument

of the utility function. Grossman (1972), for example, models health as a capital stock

that is subject to depreciation (e.g., the effects of ageing). Health care visits restore the

stock. Under the home production framework, individuals decide when to make health

care visits to maintain their health stock, or to deal with negative shocks to the stock

in the form of accidents or illnesses. As such, individual demand will be a function of

the parameters of the individuals’ utility functions.

21.1 The MEPS data

The file health.mat (on the class web page) contains 500 observations on six measures

of health care usage. The data is from the 1996 Medical Expenditure Panel Survey

(MEPS). You can get more information at http://www.meps.ahrq.gov/. The six

measures of use are are office-based visits (OBDV), outpatient visits (OPV), inpa-

tient visits (IPV), emergency room visits (ERV), dental visits (VDV), and number of

prescription drugs taken (PRESCR). The conditioning variables are private insurance

(PRIV), public insurance (PUBLIC), age (AGE), sex (SEX), income (INCOME) and

years of education (EDUC). PRIV and PUBLIC are 0/1 binary variables, where a 1

indicates that the person has access to public or private insurance coverage. SEX is

also 0/1, where 1 indicates that the person is female.
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Here are descriptive statistics for the measures of usage:

mean variance mean/var max % zeros

OBDV 3.4120 37.446 0.091117 68.000 0.32000

OPV 0.20400 1.0944 0.18641 20.000 0.88800

ERV 0.18400 0.30614 0.60102 6.0000 0.86400

IPV 0.076000 0.14222 0.53437 5.0000 0.94600

DV 1.0360 3.1107 0.33304 16.000 0.55800

PRESCR 8.0500 214.39 0.037549 107.00 0.29000

Since health care visits are count data, a simple approach to modeling demand

could be based upon the Poisson model. Recall that the Poisson model is

fY (y) =
exp(−λ)λy

y!

λ = exp(x′β)

Here, we’ll let the x vector be

x = [1 PUBLIC PRIV SEX AGE EDUC INC]′

Recall that the Poisson model imposes that the conditional mean equals the condi-

tional variance (equidispersion). We see from the above descriptive statistics that the

data are all unconditionally overdispersed, since the unconditional variance is greater

than the unconditional mean. To achieve conditional equidispersion, the model would

have to fit quite well.
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Here are results for OBDV:

**************************************************************************

MEPS data, OBDV

poisson results

Strong convergence

Observations = 500

Function value -3.8679

params t(OPG) t(Sand.) t(Hess)

constant -0.51541 -8.5242 -1.0992 -3.2325

pub_ins 0.61054 16.999 3.0582 7.6966

priv_ins 0.18459 5.1354 1.1697 2.4819

sex 0.35452 21.396 2.1007 7.0053

age 0.022112 24.396 4.3966 10.795

educ 0.027979 8.6896 0.93269 2.9554

inc 0.0070852 2.2891 0.30328 0.87485

Information Criteria

Consistent Akaike

3918.4

Schwartz

3911.4

Hannan-Quinn

3893.5

Akaike

3881.9

**************************************************************************

• The insurance variables have the expected sign, but PRIV is not significant.
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Women and older people make more visits. Income appears not to affect de-

mand for office based visits.

• Note that the t-stats differ quite a bit according to the covariance matrix estima-

tor. This big difference is an indicator of possible misspecification. If there is

misspecification, then only the sandwich form is valid (since we have a QML

estimator in this case, and the information matrix equality doesn’t hold). The

information matrix test is based on this principle.
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Here are results for ERV.

**************************************************************************

MEPS data, ERV

poisson results

Strong convergence

Observations = 500

Function value -0.49978

params t(OPG) t(Sand.) t(Hess)

constant -1.1669 -2.0607 -1.6099 -1.8912

pub_ins 0.65307 2.3722 1.7257 2.3114

priv_ins -0.26764 -0.93634 -0.83555 -0.90040

sex -0.57001 -2.7777 -2.0050 -2.6389

age 0.0037963 0.60114 0.32714 0.45393

educ 0.0010258 0.026424 0.024977 0.026173

inc -0.12531 -2.2085 -2.2781 -2.3102

Information Criteria

Consistent Akaike

550.29

Schwartz

543.29

Hannan-Quinn

525.36

Akaike

513.78

**************************************************************************
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Table 1: Marginal Variances, Sample and Estimated (Poisson)
OBDV ERV

Sample 37.446 0.30614
Estimated 3.4540 0.19060

• In this case, private insurance has a negative impact.

• Women are less likely to make emergency room visits compared to men.

• Richer people make fewer visits, and the effect seems to be significant. Perhaps

poor people do not have good insurance coverage and use emergency visits as a

substitute for preventive care?

• There is less difference between the three forms of the t-statistics. Is this an

indication that the Poisson model might work better for ERV than for OBDV?

To check the plausibility of the Poisson model, we can compare the sample uncon-

ditional variance with the estimated unconditional variance according to the Poisson

model: V̂ (y) = ∑n
t=1 λ̂t

n . For OBDV and ERV, we get We see that even after condi-

tioning, the overdispersion is not captured in either case. There is huge problem with

OBDV, and a significant problem with ERV. In both cases the Poisson model does not

appear to be plausible.

21.2 Infinite mixture models

Reference: Cameron and Trivedi (1998) Regression analysis of count data, chapter 4.

The two measures seem to exhibit extra-Poisson variation. To capture unobserved

heterogeneity, a possibility is the random parameters approach. Consider the possibil-
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ity that the constant term in a Poisson model were random:

fY (y,ε|x) =
exp(−λ)λy

y!

λ = exp(x′β+ ε)

= exp(x′β)exp(ε)

= θν

where θ = exp(x′β) and ν = exp(ε). Now ν captures the randomness in the constant.

The problem is that we don’t observe ν, so we will need to marginalize it to get a

usable density

fY (y|x) =
� ∞

−∞

exp[−λ]λy

y!
fλ(z)dz

This density can be used directly, perhaps using numberical integration to evaluate the

likelihood function. In some cases, though, the integral will have an analytic solution.

For example, if ν follows a certain one parameter gamma density, then

fY (y|φ) =
Γ(y+ψ)

Γ(y+1)Γ(ψ)

(
ψ

ψ+λ

)ψ( λ
ψ+λ

)y

(35)

where φ = (λ,ψ). ψ appear since it is the parameter of the gamma density.

• For this density, E(y|x) = λ. We again parameterize λ = exp(x′β)

• The variance depends upon how ψ is parameterized.

– If ψ = λ/α, where α > 0, then V (y|x) = λ + αλ. Note that λ is a function

of x, so that the variance is too. This is referred to as the NB-I model.

– If ψ = 1/α, where α > 0, then V (y|x) = λ+αλ2. This is referred to as the

NB-II model.
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So both forms of the NB model allow for overdispersion, with the NB-II model allow-

ing for a more radical form.

• Testing reduction of a NB model to a Poisson model cannot be done by testing

α = 0 using standard Wald or LR procedures. The critical values need to be

adjusted to account for the fact that α = 0 is on the boundary of the parameter

space.
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Here are NB-I estimation results for OBDV

MEPS data, OBDV

negbin results

Strong convergence

Observations = 500

Function value -2.2656

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant -0.055766 -0.16793 -0.17418 -0.17215

pub_ins 0.47936 2.9406 2.8296 2.9122

priv_ins 0.20673 1.3847 1.4201 1.4086

sex 0.34916 3.2466 3.4148 3.3434

age 0.015116 3.3569 3.8055 3.5974

educ 0.014637 0.78661 0.67910 0.73757

inc 0.012581 0.60022 0.93782 0.76330

ln_alpha 1.7389 23.669 11.295 16.660

Information Criteria

Consistent Akaike

2323.3

Schwartz

2315.3

Hannan-Quinn

2294.8

Akaike

2281.6
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Here are NB-II results for OBDV

**************************************************************************

MEPS data, OBDV

negbin results

Strong convergence

Observations = 500

Function value -2.2616

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant -0.65981 -1.8913 -1.4717 -1.6977

pub_ins 0.68928 2.9991 3.1825 3.1436

priv_ins 0.22171 1.1515 1.2057 1.1917

sex 0.44610 3.8752 2.9768 3.5164

age 0.024221 3.8193 4.5236 4.3239

educ 0.020608 0.94844 0.74627 0.86004

inc 0.020040 0.87374 0.72569 0.86579

ln_alpha 0.47421 5.6622 4.6278 5.6281

Information Criteria

Consistent Akaike

2319.3

Schwartz

2311.3

Hannan-Quinn

2290.8

Akaike

2277.6
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Table 2: Marginal Variances, Sample and Estimated (NB-II)
OBDV ERV

Sample 37.446 0.30614
Estimated 26.962 0.27620

**************************************************************************

• For the OBDV model, the NB-II model does a better job, in terms of the average

log-likelihood and the information criteria.

• Note that both versions of the NB model fit much better than does the Poisson

model.

• The t-statistics are now similar for all three ways of calculating them, which

might indicate that the serious specification problems of the Poisson model for

the OBDV data are partially solved by moving to the NB model.

• The estimated lnα is highly significant.

To check the plausibility of the NB-II model, we can compare the sample uncon-

ditional variance with the estimated unconditional variance according to the NB-II

model: V̂ (y) =
∑n

t=1 λ̂t+α̂(λ̂t)
2

n . For OBDV and ERV (estimation results not reported),

we get The overdispersion problem is significantly better than in the Poisson case, but

there is still some overdispersion that is not captured, for both OBDV and ERV.

21.3 Hurdle models

Returning to the Poisson model, lets look at actual and fitted count probabilities. Ac-

tual frequencies are f (y = j) = ∑i 1(yi = j)/n and fitted frequencies are f̂ (y = j) =

∑n
i=1 fY ( j|xi, θ̂)/n We see that for the OBDV measure, there are many more actual ze-

333



Table 3: Actual and Poisson fitted frequencies
Count OBDV ERV

Count Actual Fitted Actual Fitted

0 0.32 0.06 0.86 0.83
1 0.18 0.15 0.10 0.14
2 0.11 0.19 0.02 0.02
3 0.10 0.18 0.004 0.002
4 0.052 0.15 0.002 0.0002
5 0.032 0.10 0 2.4e-5

ros than predicted. For ERV, there are somewhat more actual zeros than fitted, but the

difference is not too important.

Why might OBDV not fit the zeros well? What if people made the decision to

contact the doctor for a first visit, they are sick, then the doctor decides on whether or

not follow-up visits are needed. This is a principal/agent type situation, where the total

number of visits depends upon the decision of both the patient and the doctor. Since

different parameters may govern the two decision-makers choices, we might expect

that different parameters govern the probability of zeros versus the other counts. Let

λp be the parameters of the patient’s demand for visits, and let λd be the paramter of

the doctor’s “demand” for visits. The patient will initiate visits according to a discrete

choice model, for example, a logit model:

Pr(Y = 0) = fY (0,λp) = 1−1/ [1+ exp(−λp)]

Pr(Y > 0) = 1/ [1+ exp(−λp)] ,

The above probabilities are used to estimate the binary 0/1 hurdle process. Then, for

the observations where visits are positive, a truncated Poisson density is estimated.
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This density is

fY (y,λd|y > 0) =
fY (y,λd)

1− exp(−λd)

Since the hurdle and truncated components of the overall density for Y share no pa-

rameters, they may be estimated separately, which is computationally more efficient

than estimating the overall model. (Recall that the BFGS algorithm, for example, will

have to invert the approximated Hessian. The computational overhead is of order K2

where K is the number of parameters to be estimated) . The expectation of Y is

E(Y |x) = Pr(Y > 0|x)E(Y |Y > 0,x)

=
1

1+ exp(−λp)

λd

1− exp(−λd)
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Here are hurdle Poisson estimation results for OBDV:

**************************************************************************

MEPS data, OBDV

logit results

Strong convergence

Observations = 500

Function value -0.58939

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant -1.5502 -2.5709 -2.5269 -2.5560

pub_ins 1.0519 3.0520 3.0027 3.0384

priv_ins 0.45867 1.7289 1.6924 1.7166

sex 0.63570 3.0873 3.1677 3.1366

age 0.018614 2.1547 2.1969 2.1807

educ 0.039606 1.0467 0.98710 1.0222

inc 0.077446 1.7655 2.1672 1.9601

Information Criteria

Consistent Akaike

639.89

Schwartz

632.89

Hannan-Quinn

614.96

Akaike

603.39

**************************************************************************
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The results for the truncated part:

**************************************************************************

MEPS data, OBDV

tpoisson results

Strong convergence

Observations = 500

Function value -2.7042

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant 0.54254 7.4291 1.1747 3.2323

pub_ins 0.31001 6.5708 1.7573 3.7183

priv_ins 0.014382 0.29433 0.10438 0.18112

sex 0.19075 10.293 1.1890 3.6942

age 0.016683 16.148 3.5262 7.9814

educ 0.016286 4.2144 0.56547 1.6353

inc -0.0079016 -2.3186 -0.35309 -0.96078

Information Criteria

Consistent Akaike

2754.7

Schwartz

2747.7

Hannan-Quinn

2729.8

Akaike

2718.2

**************************************************************************
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Table 4: Actual and Hurdle Poisson fitted frequencies
Count OBDV ERV

Count Actual Fitted HP Fitted NB-II Actual Fitted HP Fitted NB-II

0 0.32 0.32 0.34 0.86 0.86 0.86
1 0.18 0.035 0.16 0.10 0.10 0.10
2 0.11 0.071 0.11 0.02 0.02 0.02
3 0.10 0.10 0.08 0.004 0.006 0.006
4 0.052 0.11 0.06 0.002 0.002 0.002
5 0.032 0.10 0.05 0 0.0005 0.001

Fitted and actual probabilites (NB-II fits are provided as well) are:

For the Hurdle Poisson models, the ERV fit is very accurate. The OBDV fit is not

so good. Zeros are exact, but 1’s and 2’s are underestimated, and higher counts are

overestimated. For the NB-II fits, performance is at least as good as the hurdle Poisson

model, and one should recall that many fewer parameters are used. Hurdle version of

the negative binomial model are also widely used.

21.4 Finite mixture models

The finite mixture approach to fitting health care demand was introduced by Deb and

Trivedi (1997). The mixture approach has the intuitive appeal of allowing for sub-

groups of the population with different health status. If individuals are classified as

healthy or unhealthy then two subgroups are defined. A finer classification scheme

would lead to more subgroups. Many studies have incorporated objective and/or sub-

jective indicators of health status in an effort to capture this heterogeneity. The avail-

able objective measures, such as limitations on activity, are not necessarily very infor-

mative about a person’s overall health status. Subjective, self-reported measures may

suffer from the same problem, and may also not be exogenous
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Finite mixture models are conceptually simple. The density is

fY (y,φ1, ...,φp,π1, ...,πp−1) =
p−1

∑
i=1

πi f (i)
Y (y,φi)+πp f p

Y (y,φp),

where πi > 0, i = 1,2, ..., p, πp = 1−∑p−1
i=1 πi, and ∑p

i=1 πi = 1. Identification requires

that the πi are ordered in some way, for example, π1 ≥ π2 ≥ ·· · ≥ πp and φi 6= φ j, i 6= j.

This is simple to accomplish post-estimation by rearrangement and possible elimina-

tion of redundant component densities.

• The properties of the mixture density follow in a straightforward way from those

of the components. In particular, the moment generating function is the same

mixture of the moment generating functions of the component densities, so, for

example, E(Y |x) = ∑p
i=1 πiµi(x), where µi(x) is the mean of the ith component

density.

• Mixture densities may suffer from overparameterization, since the total num-

ber of parameters grows rapidly with the number of component densities. It is

possible to constrained parameters across the mixtures.

• Testing for the number of component densities is a tricky issue. For example,

testing for p = 1 (a single component, which is to say, no mixture) versus p = 2

(a mixture of two components) involves the restriction π1 = 1, which is on the

boundary of the parameter space. Not that when π1 = 1, the parameters of the

second component can take on any value without affecting the density. Usual

methods such as the likelihood ratio test are not applicable when parameters

are on the boundary under the null hypothesis. Information criteria means of

choosing the model (see below) are valid.

The following are results for a mixture of 2 negative binomial (NB-I) models, for the
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OBDV data.
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**************************************************************************

MEPS data, OBDV

mixnegbin results

Strong convergence

Observations = 500

Function value -2.2312

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant 0.64852 1.3851 1.3226 1.4358

pub_ins -0.062139 -0.23188 -0.13802 -0.18729

priv_ins 0.093396 0.46948 0.33046 0.40854

sex 0.39785 2.6121 2.2148 2.4882

age 0.015969 2.5173 2.5475 2.7151

educ -0.049175 -1.8013 -1.7061 -1.8036

inc 0.015880 0.58386 0.76782 0.73281

ln_alpha 0.69961 2.3456 2.0396 2.4029

constant -3.6130 -1.6126 -1.7365 -1.8411

pub_ins 2.3456 1.7527 3.7677 2.6519

priv_ins 0.77431 0.73854 1.1366 0.97338

sex 0.34886 0.80035 0.74016 0.81892

age 0.021425 1.1354 1.3032 1.3387

educ 0.22461 2.0922 1.7826 2.1470

inc 0.019227 0.20453 0.40854 0.36313

ln_alpha 2.8419 6.2497 6.8702 7.6182

logit_inv_mix 0.85186 1.7096 1.4827 1.7883

Information Criteria
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Consistent Akaike

2353.8

Schwartz

2336.8

Hannan-Quinn

2293.3

Akaike

2265.2

**************************************************************************

Delta method for mix parameter st. err.

mix se_mix

0.70096 0.12043

• The 95% confidence interval for the mix parameter is perilously close to 1, which

suggests that there may really be only one component density, rather than a

mixture. Again, this is not the way to test this - it is merely suggetive.

• Education is interesting. For the subpopulation that is “healthy”, i.e., that makes

relatively few visits, education seems to have a positive effect on visits. For the

“unhealthy” group, education has a negative effect on visits. The other results

are more mixed. A larger sample could help clarify things.

The following are results for a 2 component constrained mixture negative binomial

model where all the slope parameters in λ j = exβ j are the same across the two compo-

nents. The constants and the overdispersion parameters α j are allowed to differ for the

two components.
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**************************************************************************

MEPS data, OBDV

cmixnegbin results

Strong convergence

Observations = 500

Function value -2.2441

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant -0.34153 -0.94203 -0.91456 -0.97943

pub_ins 0.45320 2.6206 2.5088 2.7067

priv_ins 0.20663 1.4258 1.3105 1.3895

sex 0.37714 3.1948 3.4929 3.5319

age 0.015822 3.1212 3.7806 3.7042

educ 0.011784 0.65887 0.50362 0.58331

inc 0.014088 0.69088 0.96831 0.83408

ln_alpha 1.1798 4.6140 7.2462 6.4293

const_2 1.2621 0.47525 2.5219 1.5060

lnalpha_2 2.7769 1.5539 6.4918 4.2243

logit_inv_mix 2.4888 0.60073 3.7224 1.9693

Information Criteria

Consistent Akaike

2323.5

Schwartz

2312.5

Hannan-Quinn
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2284.3

Akaike

2266.1

**************************************************************************

Delta method for mix parameter st. err.

mix se_mix

0.92335 0.047318

• Now the mixture parameter is even closer to 1.

• The slope parameter estimates are pretty close to what we got with the NB-I

model.

21.5 Comparing models using information criteria

A Poisson model can’t be tested (using standard methods) as a restriction of a negative

binomial model. Testing for collapse of a finite mixture to a mixture of fewer compo-

nents has the same problem. How can we determine which of competing models is the

best?

The information criteria approach is one possibility. Information criteria are func-

tions of the log-likelihood, with a penalty for the number of parameters used. Three

popular information criteria are the Akaike (AIC), Bayes (BIC) and consistent Akaike

(CAIC). The formulae are

CAIC = −2lnL(θ̂)+ k(lnn+1)

BIC = −2lnL(θ̂)+ k lnn

AIC = −2lnL(θ̂)+2k
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Table 5: Information Criteria, OBDV
Model AIC BIC CAIC

Poisson 3822 3911 3918
NB-I 2282 2315 2323

Hurdle Poisson 3333 3381 3395
MNB-I 2265 2337 2354

CMNB-I 2266 2312 2323

It can be shown that the CAIC and BIC will select the correctly specified model from a

group of models, asymptotically. This doesn’t mean, of course, that the correct model

is necesarily in the group. The AIC is not consistent, and will asymptotically favor

an over-parameterized model over the correctly specified model. Here are information

criteria values for the models we’ve seen, for OBDV. According to the AIC, the best

is the MNB-I, which has relatively many parameters. The best according to the BIC is

CMNB-I, and according to CAIC, the best is NB-I. The Poisson-based models do not

do well.

22 Nonparametric inference

22.1 Possible pitfalls of parametric inference: estimation

Readings: H. White (1980) “Using Least Squares to Approximate Unknown Regres-

sion Functions,” International Economic Review, pp. 149-70.

In this section we consider a simple example, which illustrates both why nonpara-

metric methods may in some cases be preferred to parametric methods.

We suppose that data is generated by random sampling of (y,x), where y = f (x)

+ε, x is uniformly distributed on (0,2π), and ε is a classical error. Suppose that

f (x) = 1+
3x
2π

−
( x

2π

)2
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The problem of interest is to estimate the elasticity of f (x) with respect to x, throughout

the range of x.

In general, the functional form of f (x) is unknown. One idea is to take a Taylor’s

series approximation to f (x) about some point x0. Flexible functional forms such as the

transcendental logarithmic (usually know as the translog) can be interpreted as second

order Taylor’s series approximations. We’ll work with a first order approximation, for

simplicity. Approximating about x0:

h(x) = f (x0)+Dx f (x0)(x− x0)

If the approximation point is x0 = 0, we can write

h(x) = a+bx

The coefficient a is the value of the function at x = 0, and the slope is the value of

the derivative at x = 0. These are of course not known. One might try estimation by

ordinary least squares. The objective function is

s(a,b) = 1/n
n

∑
t=1

(yt −h(xt))
2 .

The limiting objective function, following the argument we used to get equations 16

and 31 is

s∞(a,b) =

� 2π

0
( f (x)−h(x))2 dx.

The theorem regarding the consistency of extremum estimators (Theorem 55) tells

us that â and b̂ will converge almost surely to the values that minimize the limiting

objective function. Solving the first order conditions2 reveals that s∞(a,b) obtains its

2All calculations were done using Scientific Workplace.
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minimum at
{

a0 = 7
6 ,b0 = 1

π
}

. The estimated approximating function ĥ(x) therefore

tends almost surely to

h∞(x) = 7/6+ x/π

We may plot the true function and the limit of the approximation to see the asymptotic

bias as a function of x:

(The approximating model is the straight line, the true model has curvature.) Note

that the approximating model is in general inconsistent, even at the approximation

point. This shows that ”flexible functional forms” based upon Taylor’s series approxi-

mations do not in general allow consistent estimation. The mathematical properties of

the Taylor’s series do not carry over when coefficients are estimated.

The approximating model seems to fit the true model fairly well, asymptotically.

However, we are interested in the elasticity of the function. Recall that an elasticity is

the marginal function divided by the average function:

ε(x) = xφ′(x)/φ(x)

Good approximation of the elasticity over the range of x will require a good approxi-

mation of both f (x) and f ′(x) over the range of x. The approximating elasticity is

η(x) = xh′(x)/h(x)

Plotting the true elasticity and the elasticity obtained from the limiting approximating

model

The true elasticity is the line that has negative slope for large x. Visually we see

that the elasticity is not approximated so well. Root mean squared error in the approx-
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imation of the elasticity is

( � 2π

0
(ε(x)−η(x))2 dx

)1/2

= .31546

Now suppose we use the leading terms of a trigonometric series as the approxi-

mating model. The reason for using a trigonometric series as an approximating model

is motivated by the asymptotic properties of the Fourier flexible functional form (Gal-

lant, 1981, 1982), which we will study in more detail below. Normally with this type

of model the number of basis functions is an increasing function of the sample size.

Here we hold the set of basis function fixed. We will consider the asymptotic behavior

of a fixed model, which we interpret as an approximation to the estimator’s behavior

in finite samples. Consider the set of basis functions:

Z(x) =

[
1 x cos(x) sin(x) cos(2x) sin(2x)

]
.

The approximating model is

gK(x) = Z(x)α.

Maintaining these basis functions as the sample size increases, we find that the limiting

objective function is minimized at

{
a1 =

7
6
,a2 =

1
π
,a3 = − 1

π2 ,a4 = 0,a5 = − 1
4π2 ,a6 = 0

}
.

Substituting these values into gK(x) we obtain the almost sure limit of the approxima-

tion

g∞(x) = 7/6+x/π+(cosx)

(
− 1

π2

)
+(sinx)0+(cos2x)

(
− 1

4π2

)
+(sin2x)0 (36)
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Plotting the approximation and the true function:

Clearly the truncated trigonometric series model offers a better approximation,

asymptotically, than does the linear model. Plotting elasticities: On average, the fit

is better, though there is some implausible wavyness in the estimate.

Root mean squared error in the approximation of the elasticity is

( � 2π

0

(
ε(x)− g′∞(x)x

g∞(x)

)2

dx

)1/2

= .16213,

about half that of the RMSE when the first order approximation is used. If the trigono-

metric series contained infinite terms, this error measure would be driven to zero, as

we shall see.

22.2 Possible pitfalls of parametric inference: hypothesis testing

What do we mean by the term “nonparametric inference”? Simply, this means in-

ferences that are possible without restricting the functions of interest to belong to a

parametric family.

• Consider means of testing for the hypothesis that consumers maximize utility. A

consequence of utility maximization is that the Slutsky matrix D2
ph(p,U), where

h(p,U) are the a set of compensated demand functions, must be negative semi-

definite. One approach to testing for utility maximization would estimate a set

of normal demand functions x(p,m).

• Estimation of these functions by normal parametric methods requires specifica-

tion of the functional form of demand, for example

x(p,m) = x(p,m,θ0)+ ε,θ0 ∈ Θ0,

349



where x(p,m,θ0) is a function of known form and Θ0 is a finite dimensional

parameter.

• After estimation, we could use x̂ = x(p,m, θ̂) to calculate (by solving the integra-

bility problem, which is non-trivial) D̂2
ph(p,U). If we can statistically reject that

the matrix is negative semi-definite, we might conclude that consumers don’t

maximize utility.

• The problem with this is that the reason for rejection of the theoretical proposi-

tion may be that our choice of functional form is incorrect. In the introductory

section we saw that functional form misspecification leads to inconsistent esti-

mation of the function and its derivatives.

• Testing using parametric models always means we are testing a compound hy-

pothesis. The hypothesis that is tested is 1) the economic proposition we wish

to test, and 2) the model is correctly specified. Failure of either 1) or 2) can lead

to rejection. This is known as the “model-induced augmenting hypothesis.”

• Varian’s WARP allows one to test for utility maximization without specifying the

form of the demand functions. The only assumptions used in the test are those

directly implied by theory, so rejection of the hypothesis calls into question the

theory.

• Nonparametric inference allows direct testing of economic propositions, without

the “model-induced augmenting hypothesis”.

22.3 The Fourier functional form

Readings: Gallant, 1987∗, “Identification and consistency in semi-nonparametric re-

gression,” in Advances in Econometrics, Fifth World Congress, V. 1, Truman Bewley,
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ed., Cambridge.

• Suppose we have a multivariate model

y = f (x)+ ε,

where f (x) is of unknown form and x is a P−dimensional vector. For simplicity,

assume that ε is a classical error. Let us take the estimation of the vector of

elasticities with typical element

ξxi =
xi

f (x)

∂ f (x)

∂xi f (x)
,

at an arbitrary point xi.

The Fourier form, following Gallant (1982), but with a somewhat different parameter-

ization, may be written as

gK(x | θK) = α+x′β+1/2x′Cx+
A

∑
α=1

J

∑
j=1

(
u jα cos( jk′

αx)− v jα sin( jk′
αx)
)
. (37)

where the K-dimensional parameter vector

θK = {α,β′,vec∗(C)′,u11,v11, . . . ,uJA,vJA}′. (38)

• We assume that the conditioning variables x have each been transformed to lie in

an interval that is shorter than 2π. This is required to avoid periodic behavior of

the approximation, which is desirable since economic functions aren’t periodic.

For example, subtract sample means, divide by the maxima of the conditioning
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variables, and multiply by 2π−eps, where eps is some positive number less than

2π in value.

• The kα are ”multi-indices” which are simply P− vectors formed of integers (neg-

ative, positive and zero). The kα, α = 1,2, ...,A are required to be linearly inde-

pendent, and we follow the convention that the first non-zero element be positive.

For example [
0 1 −1 0 1

]′

is a potential multi-index to be used, but

[
0 −1 −1 0 1

]′

is not since its first nonzero element is negative. Nor is

[
0 2 −2 0 2

]′

a multi-index we would use, since it is a scalar multiple of the original multi-

index.

• We parameterize the matrix C differently than does Gallant because it simplifies

things in practice. The cost of this is that we are no longer able to test a quadratic

specification using nested testing.

The vector of first partial derivatives is

DxgK(x | θK) = β+Cx+
A

∑
α=1

J

∑
j=1

[(
−u jα sin( jk′

αx)− v jα cos( jk′
αx)
)

jkα
]

(39)
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and the matrix of second partial derivatives is

D2
xgK(x|θK) = C+

A

∑
α=1

J

∑
j=1

[(
−u jα cos( jk′

αx)+ v jα sin( jk′
αx)
)

j2kαk′
α
]

(40)

To define a compact notation for partial derivatives, let λ be an N-dimensional

multi-index with no negative elements. Define | λ |∗ as the sum of the elements of λ.

If we have N arguments x of the (arbitrary) function h(x), use Dλh(x) to indicate a

certain partial derivative:

Dλh(x) ≡ ∂|λ|∗

∂xλ1
1 ∂xλ2

2 · · ·∂xλN
N

h(x)

When λ is the zero vector, Dλh(x) ≡ h(x). Taking this definition and the last few

equations into account, we see that it is possible to define (1×K) vector Zλ(x) so that

DλgK(x|θK) = zλ(x)′θK. (41)

• Both the approximating model and the derivatives of the approximating model

are linear in the parameters.

• For the approximating model to the function (not derivatives), write gK(x|θK) =

z′θK for simplicity

The following theorem can be used to prove the consistency of the Fourier form.

Theorem 64 [Gallant and Nychka, 1987] Suppose that ĥn is obtained by maximizing

a sample objective function sn(h) over HKn where HK is a subset of some function

space H on which is defined a norm ‖ h ‖. Consider the following conditions:
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(a) Compactness: The closure of H with respect to ‖ h ‖ is compact in the relative

topology defined by ‖ h ‖.

(b) Denseness: ∪KHK , K = 1,2,3, ... is a dense subset of the closure of H with

respect to ‖ h ‖ and HK ⊂ HK+1.

(c) Uniform convergence: There is a point h∗ in H and there is a function s∞(h,h∗)

that is continuous in h with respect to ‖ h ‖ such that

lim
n→∞

sup
H

| sn(h)− s∞(h,h∗) |= 0

almost surely.

(d) Identification: Any point h in the closure of H with s̄(h,h∗) ≥ s∞(h∗,h∗) must

have ‖ h−h∗ ‖= 0.

Under these conditions limn→∞ ‖ h∗− ĥn ‖= 0 almost surely, provided that limn→∞ Kn =

∞ almost surely.

The modification of the original statement of the theorem that has been made is to

set the parameter space Θ in Gallant and Nychka’s (1987) Theorem 0 to a single point

and to state the theorem in terms of maximization rather than minimization.

This theorem is very similar in form to Theorem 55. The main differences are:

1. A generic norm ‖ h ‖ is used in place of the Euclidean norm. This norm may

be stronger than the Euclidean norm, so that convergence with respect to ‖ h ‖

implies convergence w.r.t the Euclidean norm. Typically we will want to make

sure that the norm is strong enough to imply convergence of all functions of

interest.

2. The “estimation space” H is a function space. It plays the role of the parameter

space Θ in our discussion of parametric estimators. There is no restriction to a
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parametric family, only a restriction to a space of functions that satisfy certain

conditions. This formulation is much less restrictive than the restriction to a

parametric family.

3. There is a denseness assumption that was not present in the other theorem.

We will not prove this theorem (the proof is quite similar to the proof of theorem [55],

see Gallant, 1987) but we will discuss its assumptions, in relation to the Fourier form

as the approximating model.

22.3.1 Sobolev norm

Since all of the assumptions involve the norm ‖ h ‖ , we need to make explicit what

norm we wish to use. We need a norm that guarantees that the errors in approximation

of the functions we are interested in are accounted for. Since we are interested in first-

order elasticities in the present case, we need close approximation of both the function

f (x) and its first derivative f ′(x), throughout the range of x. Let X be an open set that

contains all values of x that we’re interested in. The Sobolev norm is appropriate in

this case. It is defined, making use of our notation for partial derivatives, as:

‖ h ‖m,X = max
|λ∗|≤m

sup
X

∣∣∣Dλh(x)
∣∣∣

To see whether or not the function f (x) is well approximated by an approximating

model gK(x | θK), we would evaluate

‖ f (x)−gK(x | θK) ‖m,X .

We see that this norm takes into account errors in approximating the function and

partial derivatives up to order m. If we want to estimate first order elasticities, as is the
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case in this example, the relevant m would be m = 1. Furthermore, since we examine

the sup over X , convergence w.r.t. the Sobolev means uniform convergence, so that we

obtain consistent estimates for all values of x.

22.3.2 Compactness

Verifying compactness with respect to this norm is quite technical and unenlighten-

ing. It is proven by Elbadawi, Gallant and Souza, Econometrica, 1983. The basic

requirement is that if we need consistency w.r.t. ‖ h ‖m,X , then the functions of interest

must belong to a Sobolev space which takes into account derivatives of order m+1. A

Sobolev space is the set of functions

Wm,X (D) = {h(x) :‖ h(x) ‖m,X < D},

where D is a finite constant. In plain words, the functions must have bounded partial

derivatives of one order higher than the derivatives we seek to estimate.

22.3.3 The estimation space and the estimation subspace

Since in our case we’re interested in consistent estimation of first-order elasticities,

we’ll define the estimation space as follows:

Definition 65 [Estimation space] The estimation space H = W2,X (D). The estima-

tion space is an open set, and we presume that h∗ ∈ H .

With seminonparametric estimators, we don’t actually optimize over the estimation

space. Rather, we optimize over a subspace, HKn, defined as:

Definition 66 [Estimation subspace] The estimation subspace HK is defined as

HK = {gK(x|θK) : gK(x|θK) ∈ W2,Z(D),θK ∈ ℜK},
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where gK(x,θK) is the Fourier form approximation as defined in Equation 37.

22.3.4 Denseness

The important point here is that HK is a space of functions that is indexed by a finite

dimensional parameter (θK has K elements, as in equation ??). With n observations,

n > K, this parameter is estimable. Note that the true function h∗ is not necessarily

an element of HK , so optimization over HK may not lead to a consistent estimator.

In order for optimization over HK to be equivalent to optimization over H , at least

asymptotically, we need that:

1. The dimension of the parameter vector, dimθKn → ∞ as n → ∞. This is achieved

by making A and J in equation 37 increasing functions of n, the sample size. It

is clear that K will have to grow more slowly than n. The second requirement is:

2. We need that the HK be dense subsets of H .

The estimation subspace HK , defined above, is a subset of the closure of the estimation

space, H . A set of subsets Aa of a set A is “dense” if the closure of the countable

union of the subsets is equal to the closure of A :

∪∞
a=1Aa = A

Use a picture here. The rest of the discussion of denseness is provided just for com-

pleteness: there’s no need to study it in detail. To show that HK is a dense subset of

H with respect to ‖ h ‖1,X , it is useful to apply Theorem 1 of Gallant (1982), who in

turn cites Edmunds and Moscatelli (1977). We reproduce the theorem as presented by

Gallant, with minor notational changes, for convenience of reference:
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Theorem 67 [Edmunds and Moscatelli, 1977] Let the real-valued function h∗(x) be

continuously differentiable up to order m on an open set containing the closure of

X . Then it is possible to choose a triangular array of coefficients θ1,θ2, . . .θK, . . . ,

such that for every q with 0 ≤ q < m, and every ε > 0, ‖ h∗(x)− hK(x|θK) ‖q,X =

o(K−m+q+ε) as K → ∞.

In the present application, q = 1, and m = 2. By definition of the estimation space,

the elements of H are once continuously differentiable on X , which is open and con-

tains the closure of X , so the theorem is applicable. Closely following Gallant and

Nychka (1987), ∪∞HK is the countable union of the HK . The implication of Theorem

67 is that there is a sequence of {hK} from ∪∞HK such that

lim
K→∞

‖ h∗−hK ‖1,X = 0,

for all h∗ ∈ H . Therefore,

H ⊂ ∪∞HK.

However,

∪∞HK ⊂ H ,

so

∪∞HK ⊂ H .

Therefore

H = ∪∞HK,

so ∪∞HK is a dense subset of H , with respect to the norm ‖ h ‖1,X .
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22.3.5 Uniform convergence

We now turn to the limiting objective function. We estimate by OLS. The sample

objective function stated in terms of maximization is

sn(θK) = −1
n

n

∑
t=1

(yt −gK(xt | θK))2

With random sampling, as in the case of Equations 16 and 31, the limiting objective

function is

s∞ (g, f ) = −
�

X
( f (x)−g(x))2 dµx. (42)

where the true function f (x) takes the place of the generic function h∗ in the presenta-

tion of the theorem. Both g(x) and f (x) are elements of ∪∞HK .

The pointwise convergence of the objective function needs to be strengthened to

uniform convergence. We will simply assume that strong stochastic equicontinuity

applies, so that we have uniform almost sure convergence. We also have continuity of

the objective function in g, with respect to the norm ‖ h ‖1,X since

lim
‖g1−g0‖1,X →0

{
s∞
(
g1, f )

)
− s∞

(
g0, f )

)}

= lim
‖g1−g0‖1,X →0

�
X

[(
g1(x)− f (x)

)2 −
(
g0(x)− f (x)

)2
]

dµx.

By the dominated convergence theorem (which applies since the finite bound D used

to define W2,Z(D) is dominated by an integrable function), the limit and the integral

can be interchanged, so by inspection, the limit is zero.
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22.3.6 Identification

The identification condition requires that for any point (g, f ) in H ×H , s∞(g, f ) ≥

s∞( f , f ) ⇒ ‖ g− f ‖1,X = 0. This condition is clearly satisfied given that g and f are

once continuously differentiable (by assumption).

22.3.7 Review of concepts

For the example of estimation of first-order elasticities, the relevant concepts are:

• Estimation space H = W2,X (D): the function space in the closure of which the

true function must lie.

• Consistency norm ‖ h ‖1,X . The closure of H is compact with respect to this

norm.

• Estimation subspace HK. The estimation subspace is the subset of H that is

representable by a Fourier form with parameter θK. These are dense subsets of

H .

• Sample objective function sn(θK), the negative of the sum of squares. By stan-

dard arguments this converges uniformly to the

• Limiting objective function s∞( g, f ), which is continuous in g and has a global

maximum in its first argument, over the closure of the infinite union of the esti-

mation subpaces, at g = f .

• As a result of this, first order elasticities

xi

f (x)

∂ f (x)

∂xi f (x)

are consistently estimated for all x ∈ X .
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22.3.8 Discussion

Consistency requires that the number of parameters used in the expansion increase

with the sample size, tending to infinity. If parameters are added at a high rate, the

bias tends relatively rapidly to zero. A basic problem is that a high rate of inclusion

of additional parameters causes the variance to tend more slowly to zero. The issue

of how to chose the rate at which parameters are added and which to add first is fairly

complex. A problem is that the allowable rates for asymptotic normality to obtain

(Andrews 1991; Gallant and Souza, 1991) are very strict. Supposing we stick to these

rates, our approximating model is:

gK(x|θK) = z′θK.

• Define ZK as the n×K matrix of regressors obtained by stacking observations.

The LS estimator is

θ̂K =
(
Z′

KZK
)+ Z′

Ky,

where (·)+ is the Moore-Penrose generalized inverse (Gauss command pinv(

X)).

– This is used since Z′
KZK may be singular, as would be the case for K(n)

large enough when some dummy variables are included.

• . The prediction, z′θ̂K, of the unknown function f (x) is asymptotically normally

distributed:
√

n
(
z′θ̂K − f (x)

) d→ N(0,AV),

where

AV = lim
n→∞

E

[
z′
(

Z′
KZK

n

)+

zσ̂2

]
.
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Formally, this is exactly the same as if we were dealing with a parametric linear

model. I emphasize, though, that this is only valid if K grows very slowly as

n grows. If we can’t stick to acceptable rates, we should probably use some

other method of approximating the small sample distribution. Bootstrapping is

a possibility. We’ll discuss this in the section on simulation.

22.4 Kernel regression estimators

Readings: Bierens, 1987, “Kernel estimators of regression functions,” in Advances in

Econometrics, Fifth World Congress, V. 1, Truman Bewley, ed., Cambridge.

An alternative method to the semi-nonparametric method is a fully nonparametric

method of estimation. Kernel regression estimation is an example (others are splines,

nearest neighbor, etc.). We’ll consider the Nadaraya-Watson kernel regression estima-

tor in a simple case.

• Suppose we have an iid sample from the joint density f (x,y), where x is k -

dimensional. The model is

yt = g(xt)+ εt,

where

E(εt|xt) = 0.

• The conditional expectation of y given x is g(x). By definition of the conditional

expectation, we have

g(x) =
�

y
f (x,y)
h(x)

dy

=
1

h(x)

�
y f (x,y)dy,
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where h(x) is the marginal density of x :

h(x) =

�
f (x,y)dy.

• This suggests that we could estimate g(x) by estimating h(x) and
�

y f (x,y)dy.

22.4.1 Estimation of the denominator

A kernel estimator for h(x) has the form

ĥ(x) =
1
n

n

∑
t=1

K [(x− xt)/γn]

γk
n

,

where n is the sample size and k is the dimension of x.

• The function K(·) (the kernel) is absolutely integrable:

�
|K(x)|dx < ∞,

and K(·) integrates to 1 : �
K(x)dx = 1.

In this respect, K(·) is like a density function, but we do not necessarily restrict

K(·) to be nonnegative.

• The window width parameter, γn is a sequence of positive numbers that satisfies

lim
n→∞

γn = 0

lim
n→∞

nγk
n = ∞

So, the window width must tend to zero, but not too quickly.
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• To show pointwise consistency of ĥ(x) for h(x), first consider the expectation

of the estimator (since the estimator is an average of iid terms we only need to

consider the expectation of a representative term):

E
[
ĥ(x)

]
=

�
γ−k

n K [(x− z)/γn]h(z)dz.

Change variables as z∗ = (x− z)/γn, so z = x− γnz∗ and | dz
dz∗′ | = γk

n, we obtain

E
[
ĥ(x)

]
=

�
γ−k

n K (z∗)h(x− γnz∗)γk
ndz∗

=

�
K (z∗)h(x− γnz∗)dz∗.

Now, asymptotically,

lim
n→∞

E
[
ĥ(x)

]
= lim

n→∞

�
K (z∗)h(x− γnz∗)dz∗

=
�

lim
n→∞

K (z∗)h(x− γnz∗)dz∗

=
�

K (z∗)h(x)dz∗

= h(x)
�

K (z∗)dz∗

= h(x),

since γn → 0 and
�

K (z∗)dz∗ = 1 by assumption. (Note: that we can pass the

limit through the integral is a result of the dominated convergence theorem.. For

this to hold we need that h(·) be dominated by an absolutely integrable function.
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• Next, considering the variance of ĥ(x), we have, due to the iid assumption

nγk
nV
[
ĥ(x)

]
= nγk

n
1
n2

n

∑
t=1

V

{
K [(x− xt)/γn]

γk
n

}

= γ−k
n

1
n

n

∑
t=1

V {K [(x− xt)/γn]}

• By the representative term argument, this is

nγk
nV
[
ĥ(x)

]
= γ−k

n V {K [(x− z)/γn]}

• Also, since V (x) = E(x2)−E(x)2 we have

nγk
nV
[
ĥ(x)

]
= γ−k

n E
{
(K [(x− z)/γn])

2
}
− γ−k

n {E (K [(x− z)/γn])}2

=
�

γ−k
n K [(x− z)/γn]

2 h(z)dz− γk
n

{ �
γ−k

n K [(x− z)/γn]h(z)dz

}2

=

�
γ−k

n K [(x− z)/γn]
2 h(z)dz− γk

nE
[
ĥ(x)

]2

The second term converges to zero:

γk
nE
[
ĥ(x)

]2
→ 0,

by the previous result regarding the expectation and the fact that γn → 0. There-

fore,

lim
n→∞

nγk
nV
[
ĥ(x)

]
= lim

n→∞

�
γ−k

n K [(x− z)/γn]
2 h(z)dz.

Using exactly the same change of variables as before, this can be shown to be

lim
n→∞

nγk
nV
[
ĥ(x)

]
= h(x)

�
[K(z∗)]2 dz∗.
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Since both
�

[K(z∗)]2 dz∗ and h(x) are bounded, this is bounded, and since nγk
n →

∞ by assumption, we have that

V
[
ĥ(x)

]
→ 0.

• Since the bias and the variance both go to zero, we have pointwise consistency

(convergence in quadratic mean implies convergence in probability).

22.4.2 Estimation of the numerator

To estimate
�

y f (x,y)dy, we need an estimator of f (x,y). The estimator has the same

form as the estimator for h(x), only with one dimension more:

f̂ (x,y) =
1
n

n

∑
t=1

K∗ [(y− yt)/γn,(x− xt)/γn]

γk+1
n

The kernel K∗ (·) is required to have mean zero:

�
yK∗ (y,x)dy = 0

and to marginalize to the previous kernel for h(x) :

�
K∗ (y,x)dy = K(x).

With this kernel, we have

�
y f̂ (y,x)dy =

1
n

n

∑
t=1

yt
K [(x− xt)/γn]

γk
n
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by marginalization of the kernel, so we obtain

ĝ(x) =
1

ĥ(x)

�
y f̂ (y,x)dy

=

1
n ∑n

t=1 yt
K[(x−xt )/γn]

γk
n

1
n ∑n

t=1
K[(x−xt )/γn]

γk
n

=
∑n

t=1 ytK [(x− xt)/γn]

∑n
t=1 K [(x− xt)/γn]

.

This is the Nadaraya-Watson kernel regression estimator.

22.4.3 Discussion

• The kernel regression estimator for g(xt) is a weighted average of the y j, j =

1,1, ...,n, where higher weights are associated with points that are closer to xt .

The weights sum to 1.

• The window width parameter γn imposes smoothness. The estimator is increas-

ingly flat as γn → ∞, since in this case each weight tends to 1/n.

• A large window width reduces the variance (strong imposition of flatness), but

increases the bias.

• A small window width reduces the bias, but makes very little use of informa-

tion except points that are in a small neighborhood of xt . Since relatively little

information is used, the variance is large when the window width is small.

• The standard normal density is a popular choice for K(.) and K∗(y,x), though

there are possibly better alternatives.
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22.4.4 Choice of the window width: Cross-validation

The selection of an appropriate window width is important. One popular method is

cross validation. This consists of splitting the sample into two parts (e.g., 50%-50%).

The first part is the “in sample” data, which is used for estimation, and the second part

is the “out of sample” data, used for evaluation of the fit though RMSE or some other

criterion. The steps are:

1. Split the data. The out of sample data is yout and xout .

2. Choose a window width γ.

3. With the in sample data, fit ŷout
t corresponding to each xout

t . This fitted value is

a function of the in sample data, as well as the evaluation point xout
t , but it does

not involve yout
t .

4. Repeat for all out of sample points.

5. Calculate RMSE(γ)

6. Go to step 2, or to the next step if enough window widths have been tried.

7. Select the γ that minimizes RMSE(γ) (Verify that a minimum has been found,

for example by plotting RMSE as a function of γ).

8. Re-estimate using the best γ and all of the data.

This same principle can be used to choose A and J in a Fourier form model.

22.5 Kernel density estimation

The previous discussion suggests that a kernel density estimator may easily be con-

structed. We have already seen how joint densities may be estimated. If were interested
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in a conditional density, for example of y conditional on x, then the kernel estimate of

the conditional density is simply

f̂y|x =
f̂ (x,y)

ĥ(x)

=

1
n ∑n

t=1
K∗[(y−yt)/γn,(x−xt )/γn]

γk+1
n

1
n ∑n

t=1
K[(x−xt )/γn]

γk
n

=
1
γn

∑n
t=1 K∗ [(y− yt)/γn,(x− xt)/γn]

∑n
t=1 K [(x− xt)/γn]

where we obtain the expressions for the joint and marginal densities from the section

on kernel regression.

22.6 Semi-nonparametric maximum likelihood

Readings: Gallant and Nychka, Econometrica, 1987. For a Fortran program to do this

and a useful discussion in the user’s guide, seehttp://www.econ.duke.edu/~get/snp.html.

See also Cameron and Johansson, Journal of Applied Econometrics, V. 12, 1997.

MLE is the estimation method of choice when we are confident about specifying

the density. Is is possible to obtain the benefits of MLE when we’re not so confident

about the specification? In part, yes.

Suppose we’re interested in the density of y conditional on x (both may be vectors).

Suppose that the density f (y|x,φ) is a reasonable starting approximation to the true

density. This density can be reshaped by multiplying it by a squared polynomial. The

new density is

gp(y|x,φ,θ) =
h2

p(y|θ) f (y|x,φ)

ηp(x,φ,θ)

where

hp(y|θ) =
p

∑
k=0

θkyk
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and ηp(x,φ,θ) is a normalizing factor to make the density integrate (sum) to one.

Because h2
p(y|θ)/ηp(x,φ,θ) is a homogenous function of θ it is necessary to impose a

normalization: θ0 is set to 1.

Similarly to Cameron and Johannson (1997), we may develop a negative binomial

polynomial (NBP) density for count data. The negative binomial baseline density may

be written (see equation as

fY (y|φ) =
Γ(y+ψ)

Γ(y+1)Γ(ψ)

(
ψ

ψ+λ

)ψ( λ
ψ+λ

)y

where φ = {λ,ψ}, λ > 0 and ψ > 0. The usual means of incorporating conditioning

variables x is the parameterization λ = ex′β. When ψ = λ/α we have the negative

binomial-I model (NB-I). When ψ = 1/α we have the negative binomial-II (NP-II)

model. For the NB-I density, V (Y ) = λ+αλ. In the case of the NB-II model, we have

V (Y ) = λ+αλ2. For both forms, E(Y ) = λ.

To obtain a more flexible density, we may reshape the negative binomial density

using a squared polynomial

hp (y|γ) =
p

∑
k=0

γkyk, (43)

The new density, with normalization to sum to one, is

fY (y|φ,γ) =
[hp (y|γ)]2
ηp(φ,γ)

Γ(y+ψ)

Γ(y+1)Γ(ψ)

(
ψ

ψ+λ

)ψ( λ
ψ+λ

)y

, (44)

The normalization factor ηp(φ,γ) is calculated (following Cameron and Johansson)

370



using

E(Y r) =
∞

∑
y=0

yr fY (y|φ,γ)

=
∞

∑
y=0

yr [hp (y|γ)]2
ηp(φ,γ)

fY (y|φ)

=
∞

∑
y=0

p

∑
k=0

p

∑
l=0

yr fY (y|φ)γkγly
kyl/ηp(φ,γ)

=
p

∑
k=0

p

∑
l=0

γkγl

{
∞

∑
y=0

yr+k+l fY (y|φ)

}
/ηp(φ,γ)

=
p

∑
k=0

p

∑
l=0

γkγlmk+l+r/ηp(φ,γ).

By setting r = 0 we get that the normalizing factor is

ηp(φ,γ) =
p

∑
k=0

p

∑
l=0

γkγlmk+l (45)

Recall that γ0 is set to 1 to achieve identification. The mr(λ,ψ) in equation 45 are the

negative binomial raw moments, which may be obtained from the moment generating

function

MY (t) = ψψ (λ− etλ+ψ
)−ψ

. (46)

To illustrate, here are the first through fourth raw moments of the NB density, calcu-

lated using Mathematica and then programmed in Ox. These are the moments you

would need to use a second order polynomial (p = 2).

if(k_gam >= 1)

{

m[][0] = lambda;

m[][1] = (lambda .* (lambda + psi + lambda .* psi)) ./ psi;

}
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if(k_gam >= 2)

{

m[][2] = (lambda .* (psi .^ 2 + 3 .* lambda .* psi .* (1 +

psi) + lambda .^ 2 .* (2 + 3 .* psi + psi .^ 2))) ./ psi

.^ 2;

m[][3] = (lambda .* (psi .^ 3 + 7 .* lambda .* psi .^ 2 .*

(1 + psi) +

6 .* lambda .^ 2 .* psi .* (2 + 3 .* psi + psi .^ 2) +

lambda .^ 3 .* (6 + 11 .* psi + 6 .* psi .^ 2 + psi .^ 3)))

./ psi .^ 3;

}

After calculating the raw moments, the normalization factor is calculated using

equation 45, again with the help of Mathematica.

if(k_gam == 1)

{

norm_factor = 1 + gam[0][] .* (2 .* m[][0] + gam[0][] .* m[][1]);

}

else

if(k_gam == 2)

{

norm_factor = 1 + gam[0][] .^ 2 .* m[][1] + 2 .* gam[0][]

.* (m[][0] + gam[1][] .* m[][2]) +

gam[1][] .* (2 .* m[][1] + gam[1][] .* m[][3]);

}

For p = 6, the analogous formulae are impressively long. This is an example of a

model that would be difficult ot formulate without the help of a program like Mathe-
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matica.

It is possible that there is conditional heterogeneity such that the appropriate re-

shaping should be more local. This can be accomodated by allowing the θk parameters

to depend upon the conditioning variables, for example using polynomials.

Gallant and Nychka, Econometrica, 1987 prove that this sort of density can ap-

proximate a wide variety of densities arbitrarily well as the degree of the polynomial

increases with the sample size. This approach is not without its drawbacks: the sample

objective function can have an extremely large number of local maxima that can lead

to numeric difficulties. If someone could figure out how to do in a way such that the

sample objective function was nice and smooth, they would probably get the paper

published in a good journal. Any ideas?

Here’s a plot of true and the limiting SNP approximations (with the order of the

polynomial fixed) to four different count data densities. The baseline model is a nega-

tive binomial density.
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23 Simulation-based estimation

Readings: In addition to the book mentioned previously, articles include Gallant and

Tauchen (1996), “Which Moments to Match?”, ECONOMETRIC THEORY, Vol. 12,

1996, pages 657-681;ă Gourieroux, Monfort and Renault (1993), “Indirect Inference,”

J. Apl. Econometrics; Pakes and Pollard (1989) Econometrica; McFadden (1989)

Econometrica.

23.1 Motivation

Simulation methods are of interest when the DGP is fully characterized by a parameter

vector, but the likelihood function is not calculable. If it were available, we would

simply estimate by MLE, which is asymptotically fully efficient.

23.1.1 Example: Multinomial and/or dynamic discrete response models

Let y∗i be a latent random vector of dimension m. Suppose that

y∗i = Xiβ+ εi

where Xi is m×K. Suppose that

εi ∼ N(0,Ω) (47)

Henceforth drop the i subscript when it is not needed for clarity.

• y∗ is not observed. Rather, we observe a many-to-one mapping

y = τ(y∗)
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This mapping is such that each element of y is either zero or one (in some cases

only one element will be one).

• Define

Ai = A(yi) = {y∗|yi = τ(y∗)}

Suppose random sampling of (yi,Xi). In this case the elements of yi may not be

independent of one another (and clearly are not if Ω is not diagonal). However,

yi is independent of y j, i 6= j.

• Let θ = (β′,(vec∗Ω)′)′ be the vector of parameters of the model. The contribu-

tion of the ith observation to the likelihood function is

pi(θ) =
�

Ai

n(y∗i −Xiβ,Ω)dy∗i

where

n(ε,Ω) = (2π)−M/2 |Ω|−1/2 exp

[−ε′Ω−1ε
2

]

is the multivariate normal density of an M -dimensional random vector. The

log-likelihood function is

lnL(θ) =
1
n

n

∑
i=1

ln pi(θ)

and the MLE θ̂ solves the score equations

1
n

n

∑
i=1

gi(θ̂) =
1
n

n

∑
i=1

Dθ pi(θ̂)

pi(θ̂)
≡ 0.

• The problem is that evaluation of Li(θ) and its derivative w.r.t. θ by standard

methods of numeric integration such as quadrature is computationally infeasi-
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ble when m (the dimension of y) is higher than 3 or 4 (as long as there are no

restrictions on Ω).

• The mapping τ(y∗) has not been made specific so far. This setup is quite general:

for different choices of τ(y∗) it nests the case of dynamic binary discrete choice

models as well as the case of multinomial discrete choice (the choice of one out

of a finite set of alternatives).

– Multinomial discrete choice is illustrated by a (very simple) job search

model. We have cross sectional data on individuals’ matching to a set of

m jobs that are available (one of which is unemployment). The utility of

alternative j is

u j = X jβ+ ε j

Utilities of jobs, stacked in the vector ui are not observed. Rather, we

observe the vector formed of elements

y j = 1
[
u j > uk,∀k ∈ m,k 6= j

]

Only one of these elements is different than zero.

– Dynamic discrete choice is illustrated by repeated choices over time be-

tween two alternatives. Let alternative j have utility

u jt = Wjtβ− ε jt,

j ∈ {1,2}

t ∈ {1,2, ...,m}
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Then

y∗ = u2 −u1

= (W2 −W1)β+ ε2 − ε1

≡ Xβ+ ε

Now the mapping is (element-by-element)

y = 1 [y∗ > 0] ,

that is yit = 1 if individual i chooses the second alternative in period t, zero

otherwise.

23.1.2 Example: Marginalization of latent variables

Economic data often presents substantial heterogeneity that may be difficult to model.

A possibility is to introduce latent random variables. This can cause the problem that

there may be no known closed form for the distribution of observable variables after

marginalizing out the unobservable latent variables. For example, count data (that

takes values 0,1,2,3, ...) is often modeled using the Poisson distribution

Pr(y = i) =
exp(−λ)λi

i!

The mean and variance of the Poisson distribution are both equal to λ :

E(y) = V (y) = λ.
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Often, one parameterizes the conditional mean as

λi = exp(Xiβ).

This ensures that the mean is positive (as it must be). Estimation by ML is straightfor-

ward.

Often, count data exhibits “overdispersion” which simply means that

V (y) > E(y).

If this is the case, a solution is to use the negative binomial distribution rather than the

Poisson. An alternative is to introduce a latent variable that reflects heterogeneity into

the specification:

λi = exp(Xiβ+ηi)

where ηi has some specified density with support S (this density may depend on addi-

tional parameters). Let dµ(ηi) be the density of ηi. In some cases, the marginal density

of y

Pr(y = yi) =

�
S

exp [−exp(Xiβ+ηi)] [exp(Xiβ+ηi)]
yi

yi!
dµ(ηi)

will have a closed-form solution (one can derive the negative binomial distribution in

the way if η has an exponential distribution), but often this will not be possible. In

this case, simulation is a means of calculating Pr(y = i), which is then used to do ML

estimation. This would be an example of the Simulated Maximum Likelihood (SML)

estimation.

• In this case, since there is only one latent variable, quadrature is probably a

better choice. However, a more flexible model with heterogeneity would allow
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all parameters (not just the constant) to vary. For example

Pr(y = yi) =

�
S

exp [−exp(Xiβi)] [exp(Xiβi)]
yi

yi!
dµ(βi)

entails a K = dimβi-dimensional integral, which will not be evaluable by quadra-

ture when K gets large.

23.1.3 Estimation of models specified in terms of stochastic differential equa-

tions

It is often convenient to formulate models in terms of continuous time using differential

equations. A realistic model should account for exogenous shocks to the system, which

can be done by assuming a random component. This leads to a model that is expressed

as a system of stochastic differential equations. Consider the process

dyt = g(θ,yt)dt +h(θ,yt)dWt

which is assumed to be stationary. {Wt} is a standard Brownian motion (Weiner pro-

cess), such that

W (T ) =
� T

0
dWt ∼ N(0,T )

Brownian motion is a continuous-time stochastic process such that

• W (0) = 0

• [W (s)−W(t)]∼ N(0,s− t)

• [W (s)−W(t)] and [W ( j)−W (k)] are independent for s > t > j > k. That is,

non-overlapping segments are independent.
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One can think of Brownian motion the accumulation of independent normally dis-

tributed shocks with infinitesimal variance.

• The function g(θ,yt) is the deterministic part.

• h(θ,yt) determines the variance of the shocks.

To estimate a model of this sort, we typically have data that are assumed to be obser-

vations of yt in discrete points y1, y2, ...yT . That is, though yt is a continuous process it

is observed in discrete time.

To perform inference on θ, direct ML or GMM estimation is not usually feasible,

because one cannot, in general, deduce the transition density f (yt |yt−1,θ). This den-

sity is necessary to evaluate the likelihood function or to evaluate moment conditions

(which are based upon expectations with respect to this density).

• A typical solution is to “discretize” the model, by which we mean to find a

discrete time approximation to the model. The discretized version of the model

is

yt − yt−1 = g(φ,yt−1)+h(φ,yt−1)εt

εt ∼ N(0,1)

The discretization induces a new parameter, φ (that is, the φ0 which defines

the best approximation of the discretization to the actual (unknown) discrete

time version of the model is not equal to θ0 which is the true parameter value).

This is an approximation, and as such “ML” estimation of φ (which is actually

quasi-maximum likelihood, QML) based upon this equation is in general biased

and inconsistent for the original parameter, θ. Nevertheless, the approximation

shouldn’t be too bad, which will be useful, as we will see.
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• The important point about these three examples is that computational difficulties

prevent direct application of ML, GMM, etc. Nevertheless the model is fully

specified in probabilistic terms up to a parameter vector. This means that the

model is simulable, conditional on the parameter vector.

23.2 Simulated maximum likelihood (SML)

For simplicity, consider cross-sectional data. An ML estimator solves

θ̂ML = argmaxsn(θ) =
1
n

n

∑
t=1

ln p(yt |Xt,θ)

where p(yt |Xt,θ) is the density function of the t th observation. When p(yt |Xt,θ) does

not have a known closed form, θ̂ML is an infeasible estimator. However, it may be

possible to define a random function such that

Eν f (ν,yt ,Xt,θ) = p(yt |Xt,θ)

where the density of ν is known. If this is the case, the simulator

p̃ (yt ,Xt,θ) =
1
H

H

∑
s=1

f (νts,yt ,Xt,θ)

is unbiased for p(yt |Xt,θ).

• The SML simply substitutes p̃ (yt ,Xt,θ) in place of p(yt |Xt,θ) in the log-likelihood

function, that is

θ̂SML = argmaxsn(θ) =
1
n

n

∑
i=1

ln p̃(yt ,Xt,θ)
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23.2.1 Example: multinomial probit

Recall that the utility of alternative j is

u j = X jβ+ ε j

and the vector y is formed of elements

y j = 1
[
u j > uk,k ∈ m,k 6= j

]

The problem is that Pr(y j = 1) can’t be calculated when m is larger than 4 or 5. How-

ever, it is easy to simulate this probability.

• Draw ε̃i from the distribution N(0,Ω)

• Calculate ũi = Xiβ+ ε̃i (where Xi is the matrix formed by stacking the Xi j)

• Define ỹi j = 1
[
ui j > uik,∀k ∈ m,k 6= j

]

• Repeat this H times and define

π̃i j =
∑H

h=1 ỹi jh

H

• Define π̃i as the m-vector formed of the π̃i j. Each element of π̃i is between 0 and

1, and the elements sum to one.

• Now p̃(yi,Xi,θ) = y′i
1
H ∑H

s=1 ln π̃i(β,Ω)

• The SML multinomial probit log-likelihood function is

lnL(β,Ω) =
1
n

n

∑
i=1

y′i ln p̃(yi,Xi,θ)
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This is to be maximized w.r.t. β and Ω.

Notes:

• The H draws of ε̃i are draw only once and are used repeatedly during the it-

erations used to find β̂ and Ω̂. The draws are different for each i. If the ε̃i are

re-drawn at every iteration the estimator will not converge.

• The log-likelihood function with this simulator is a discontinuous function of β

and Ω. This does not cause problems from a theoretical point of view since it

can be shown that lnL(β,Ω) is stochastically equicontinuous. However, it does

cause problems if one attempts to use a gradient-based optimization method such

as Newton-Raphson.

• It may be the case, particularly if few simulations, H, are used, that some ele-

ments of π̃i are zero or one. In this case, taking the logarithm is going to cause

problems.

• Solutions to discontinuity:

– 1) use an estimation method that doesn’t require a continuous and differen-

tiable objective function, for example, simulated annealing. This is com-

putationally costly.

– 2) Smooth the simulated probabilities so that they are continuous functions

of the parameters. For example, apply a kernel transformation such as

ỹi j = Φ
(

A×
[

ui j −
m

max
k=1

uik

])
+ .5×1

[
ui j =

m
max
k=1

uik

]

where A is a large positive number. This approximates a step function

such that ỹi j is very close to zero if ui j is not the maximum, and ui j = 1
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if it is the maximum. This makes ỹi j a continuous function of β and Ω,

so that p̃i j and therefore lnL(β,Ω) will be continuous and differentiable.

Consistency requires that A(n)
p→ ∞, so that the approximation to a step

function becomes arbitrarily close as the sample size increases. There are

alternative methods (e.g., Gibbs sampling) that may work better, but this is

too technical to discuss here.

• To solve to log(0) problem, use the slog function distributed on the web page.

Also, increase H if this is a serious problem.

23.2.2 Properties

The properties of the SML estimator depend on how H is set. The following is taken

from Lee (1995) “Asymptotic Bias in Simulated Maximum Likelihood Estimation of

Discrete Choice Models,” Econometric Theory, 11, pp. 437-83.

Theorem 68 [Lee] 1) if limn→∞ n1/2/H = 0, then

√
n
(
θ̂SML −θ0) d→ N(0,I−1(θ0))

2) if limn→∞ n1/2/H = λ, λ a finite constant, then

√
n
(
θ̂SML −θ0) d→ N(B,I−1(θ0))

where B is a finite vector of constants.

• This means that the SML estimator is asymptotically biased if H doesn’t grow

faster than n1/2.

385



• The varcov is the typical inverse of the information matrix, so that as long as H

grows fast enough the estimator is consistent and fully asymptotically efficient.

23.3 Method of simulated moments (MSM)

Suppose we have a DGP(y|x,θ) which is simulable given θ, but is such that the density

of y is not calculable.

Once could, in principle, base a GMM estimator upon the moment conditions

mt(θ) = [K(yt ,xt)− k(xt,θ)]zt

where

k(xt ,θ) =
�

K(yt ,xt)p(y|xt ,θ)dy,

zt is a vector of instruments in the information set and p(y|xt ,θ) is the density of y

conditional on xt . The problem is that this density is not available.

• However k(xt ,θ) is readily simulated using

k̃ (xt ,θ) =
1
H

H

∑
h=1

K(ỹh
t ,xt)

• By the law of large numbers, k̃ (xt ,θ)
a.s.→ k (xt ,θ) , as H → ∞, which provides

a clear intuitive basis for the estimator, though in fact we obtain consistency

even for H finite, since a law of large numbers is also operating across the n

observations of real data, so errors introduced by simulation cancel themselves

out.
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• This allows us to form the moment conditions

m̃t(θ) =
[
K(yt ,xt)− k̃ (xt ,θ)

]
zt (48)

where zt is drawn from the information set. As before, form

m̃(θ) =
1
n

n

∑
i=1

m̃t(θ)

=
1
n

n

∑
i=1

[
K(yt,xt)−

1
H

H

∑
h=1

k(ỹh
t ,xt)

]
zt (49)

with which we form the GMM criterion and estimate as usual. Note that the

unbiased simulator k(ỹh
t ,xt) appears linearly within the sums.

23.3.1 Properties

Suppose that the optimal weighting matrix is used. McFadden (ref. above) and Pakes

and Pollard (refs. above) show that the asymptotic distribution of the MSM estimator

is very similar to that of the infeasible GMM estimator. In particular, assuming that

the optimal weighting matrix is used, and for H finite,

√
n
(
θ̂MSM −θ0) d→ N

[
0,

(
1+

1
H

)(
D∞Ω−1D′

∞
)−1
]

(50)

where
(
D∞Ω−1D′

∞
)−1

is the asymptotic variance of the infeasible GMM estimator.

• That is, the asymptotic variance is inflated by a factor 1 + 1/H. For this reason

the MSM estimator is not fully asymptotically efficient relative to the infeasible

GMM estimator, for H finite, but the efficiency loss is small and controllable, by

setting H reasonably large.

• The estimator is asymptotically unbiased even for H = 1. This is an advantage
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relative to SML.

• If one doesn’t use the optimal weighting matrix, the asymptotic varcov is just

the ordinary GMM varcov, inflated by 1+1/H.

• The above presentation is in terms of a specific moment condition based upon

the conditional mean. Simulated GMM can be applied to moment conditions of

any form.

23.3.2 Comments

Why is SML inconsistent if H is finite, while MSM is? The reason is that SML is

based upon an average of logarithms of an unbiased simulator (the densities of the

observations). To use the multinomial probit model as an example, the log-likelihood

function is

lnL(β,Ω) =
1
n

n

∑
i=1

y′i ln pi(β,Ω)

The SML version is

lnL(β,Ω) =
1
n

n

∑
i=1

y′i ln p̃i(β,Ω)

The problem is that

E ln(p̃i(β,Ω)) 6= ln(E p̃i(β,Ω))

in spite of the fact that

E p̃i(β,Ω) = pi(β,Ω)

due to the fact that ln(·) is a nonlinear transformation. The only way for the two to be

equal (in the limit) is if H tends to infinite so that p̃(·) tends to p(·).

The reason that MSM does not suffer from this problem is that in this case the

unbiased simulator appears linearly within every sum of terms, and it appears within a
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sum over n (see equation [??]). Therefore the SLLN applies to cancel out simulation

errors, from which we get consistency. That is, using simple notation for the random

sampling case, the moment conditions

m̃(θ) =
1
n

n

∑
i=1

[
K(yt ,xt)−

1
H

H

∑
h=1

k(ỹh
t ,xt)

]
zt (51)

=
1
n

n

∑
i=1

[
k(xt ,θ0)+ εt −

1
H

H

∑
h=1

[k(xt ,θ)+ ε̃ht]

]
zt (52)

converge almost surely to

m̃∞(θ) =

� [
k(x,θ0)− k(x,θ)

]
z(x)dµ(x).

(note: zt is assume to be made up of functions of xt). The objective function converges

to

s∞(θ) = m̃∞(θ)′Ω−1
∞ m̃∞(θ)

which obviously has a minimum at θ0, henceforth consistency.

• If you look at equation 52 a bit, you will see why the variance inflation factor is

(1+ 1
H ).

23.4 Efficient method of moments (EMM)

The choice of which moments upon which to base a GMM estimator can have very

pronounced effects upon the efficiency of the estimator.

• A poor choice of moment conditions may lead to very inefficient estimators, and

can even cause identification problems (as we’ve seen with the GMM problem

set).
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• The drawback of the above approach MSM is that the moment conditions used

in estimation are selected arbitrarily. The asymptotic efficiency of the estimator

may be low.

• The asymptotically optimal choice of moments would be the score vector of the

likelihood function,

mt(θ) = Dθ ln pt(θ | It)

As before, this choice is unavailable.

The efficient method of moments (EMM) (see Gallant and Tauchen (1996), “Which

Moments to Match?”, ECONOMETRIC THEORY, Vol. 12, 1996, pages 657-681)

seeks to provide moment conditions that closely mimic the score vector. If the approx-

imation is very good, the resulting estimator will be very nearly fully efficient.

The DGP is characterized by random sampling from the density

p(yt |xt ,θ0) ≡ pt(θ0)

We can define an auxiliary model, called the “score generator”, which simply pro-

vides a (misspecified) parametric density

f (y|xt ,λ) ≡ ft(λ)

• This density is known up to a parameter λ. We assume that this density function

is calculable. Therefore quasi-ML estimation is possible. Specifically,

λ̂ = argmax
Λ

sn(λ) =
1
n

n

∑
t=1

ln ft(λ).

• After determining λ̂ we can calculate the score functions Dλ ln f (yt |xt , λ̂).
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• The important point is that even if the density is misspecified, there is a pseudo-

true λ0 for which the true expectation, taken with respect to the true but unknown

density of y, p(y|xt ,θ0), and then marginalized over x is zero:

∃λ0 : EX EY |X
[
Dλ ln f (y|x,λ0)

]
=

�
X

�
Y |X

Dλ ln f (y|x,λ0)p(y|x,θ0)dydµ(x) = 0

• We have seen in the section on QML that λ̂ p→λ0; this suggests using the moment

conditions

mn(θ, λ̂) =
1
n

n

∑
t=1

�
Dλ ln ft(λ̂)pt(θ)dy (53)

• These moment conditions are not calculable, since pt(θ) is not available, but

they are simulable using

m̃n(θ, λ̂) =
1
n

n

∑
t=1

1
H

H

∑
h=1

Dλ ln f (ỹh
t |xt , λ̂)

where ỹh
t is a draw from DGP(θ), holding xt fixed. By the LLN and the fact that

λ̂ converges to λ0,

m̃∞(θ0,λ0) = 0.

This is not the case for other values of θ, assuming that λ0 is identified.

• The advantage of this procedure is that if f (yt |xt ,λ) closely approximates p(y|xt ,θ),

then m̃n(θ, λ̂) will closely approximate the optimal moment conditions which

characterize maximum likelihood estimation, which is fully efficient.

• If one has prior information that a certain density approximates the data well, it

would be a good choice for f (·).

• If one has no density in mind, there exist good ways of approximating unknown
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distributions parametrically: Philips’ ERA’s (Econometrica, 1983) and Gallant

and Nychka’s (Econometrica, 1987) SNP density estimator which we saw be-

fore. Since the SNP density is consistent, the efficiency of the indirect estimator

is the same as the infeasible ML estimator.

23.4.1 Optimal weighting matrix

I will present the theory for H finite, and possibly small. This is done because it is

sometimes impractical to estimate with H very large. Gallant and Tauchen give the

theory for the case of H so large that it may be treated as infinite (the difference being

irrelevant given the numerical precision of a computer). The theory for the case of of

infinite follows directly from the results presented here.

The moment condition m̃(θ, λ̂) depends on the pseudo-ML estimate λ̂. We can

apply Theorem 58 to conclude that

√
n
(

λ̂−λ0
)

d→ N
[
0,J (λ0)−1I (λ0)J (λ0)−1] (54)

If the density f (yt |xt , λ̂) were in fact the true density p(y|xt ,θ), then λ̂ would be the

maximum likelihood estimator, and J (λ0)−1I (λ0) would be an identity matrix, due

to the information matrix equality. However, in the present case we assume that

f (yt |xt , λ̂) is only an approximation to p(y|xt ,θ), so there is no cancellation.

Recall that J (λ0) ≡ p lim
(

∂2

∂λ∂λ′ sn(λ0)
)

. Comparing the definition of sn(λ) with

the definition of the moment condition in Equation 53, we see that

J (λ0) = Dλ′m(θ0,λ0).
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As in Theorem 58,

I (λ0) = lim
n→∞

E
[

n
∂sn(λ)

∂λ

∣∣∣∣
λ0

∂sn(λ)

∂λ′

∣∣∣∣
λ0

]
.

In this case, this is simply the asymptotic variance covariance matrix of the moment

conditions, Ω. Now take a first order Taylor’s series approximation to
√

nmn(θ0, λ̂)

about λ0 :

√
nm̃n(θ0, λ̂) =

√
nm̃n(θ0,λ0)+

√
nDλ′m̃(θ0,λ0)

(
λ̂−λ0

)
+op(1)

First consider
√

nm̃n(θ0,λ0). It is straightforward but somewhat tedious to show

that the asymptotic variance of this term is 1
H I∞(λ0).

Next consider the second term
√

nDλ′m̃(θ0,λ0)
(

λ̂−λ0
)

. Note that Dλ′m̃n(θ0,λ0)
a.s.→

J (λ0), so we have

√
nDλ′m̃(θ0,λ0)

(
λ̂−λ0

)
=

√
nJ (λ0)

(
λ̂−λ0

)
,a.s.

But noting equation 54

√
nJ (λ0)

(
λ̂−λ0

)
a∼ N

[
0,I (λ0)

]

Now, combining the results for the first and second terms,

√
nm̃n(θ0, λ̂)

a∼ N

[
0,

(
1+

1
H

)
I (λ0)

]

Suppose that �I (λ0) is a consistent estimator of the asymptotic variance-covariance

matrix of the moment conditions. This may be complicated if the score generator is

a poor approximator, since the individual score contributions may not have mean zero
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in this case (see the section on QML) . Even if this is the case, the individuals means

can be calculated by simulation, so it is always possible to consistently estimate I (λ0)

when the model is simulable. On the other hand, if the score generator is taken to

be correctly specified, the ordinary estimator of the information matrix is consistent.

Combining this with the result on the efficient GMM weighting matrix in Theorem 61,

we see that defining θ̂ as

θ̂ = argmin
Θ

mn(θ, λ̂)′
[(

1+
1
H

)
�I (λ0)

]−1

mn(θ, λ̂)

is the GMM estimator with the efficient choice of weighting matrix.

• If one has used the Gallant-Nychka ML estimator as the auxiliary model, the

appropriate weighting matrix is simply the information matrix of the auxiliary

model, since the scores are uncorrelated. (e.g., it really is ML estimation asymp-

totically, since the score generator can approximate the unknown density arbi-

trarily well).

23.4.2 Asymptotic distribution

Since we use the optimal weighting matrix, the asymptotic distribution is as in Equa-

tion 24, so we have (using the result in Equation 54):

√
n
(
θ̂−θ0) d→ N


0,

(
D∞

[(
1+

1
H

)
I (λ0)

]−1

D′
∞

)−1

 ,

where

D∞ = lim
n→∞

E
[
Dθm′

n(θ
0,λ0)

]
.
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This can be consistently estimated using

D̂ = Dθm′
n(θ̂, λ̂)

23.4.3 Diagnotic testing

The fact that
√

nmn(θ0, λ̂)
a∼ N

[
0,

(
1+

1
H

)
I (λ0)

]

implies that

nmn(θ̂, λ̂)′
[(

1+
1
H

)
I (λ̂)

]−1

mn(θ̂, λ̂)
a∼ χ2(q)

where q is dim(λ)− dim(θ), since without dim(θ) moment conditions the model is

not identified, so testing is impossible. One test of the model is simply based on this

statistic: if it exceeds the χ2(q) critical point, something may be wrong (the small

sample performance of this sort of test would be a topic worth investigating).

• Information about what is wrong can be gotten from the pseudo-t-statistics:

(
diag

[(
1+

1
H

)
I (λ̂)

]1/2
)−1√

nmn(θ̂, λ̂)

can be used to test which moments are not well modeled. Since these moments

are related to parameters of the score generator, which are usually related to

certain features of the model, this information can be used to revise the model.

These aren’t actually distributed as N(0,1), since
√

nmn(θ0, λ̂) and
√

nmn(θ̂, λ̂)

have different distributions (that of
√

nmn(θ̂, λ̂) is somewhat more complicated).

It can be shown that the pseudo-t statistics are biased toward nonrejection. See

Gourieroux et. al. or Gallant and Long, 1995, for more details.
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23.5 Application I: estimation of auction models

References: Laffont, Ossard and Vuong, “The Econometrics of First Price Auctions,”

Econometrica, 1995.

The above estimators open up interesting research possibilities in areas that are

relatively undeveloped empirically. An example is models of auctions, which are well

developed theoretically but much less so empirically. To see whether a theoretical

model is compatible with observed behavior, one needs an econometric model suffi-

ciently rich so that it can embed the complicated interactions between values, strategic

behavior and attitudes toward risk. The following illustrates how a Sealed Bid First

Price auction could be modeled econometrically.

Assumptions:

• B bidders (known before bidding).

• ro: reservation price. If the highest bid is below r0 the good is not sold.

• q : vector of characteristics of the auctioned good

• Bidders seal their bids, and envelopes are opened after all bids collected.

• Each bidder has private valuation vi(q,α0), i = 1,2, ...,B.

• Bidders know their own valuation and the distribution of valuations in the popu-

lation, f (v|q,β0).

• The bidders at time t are assumed to be drawn randomly from the population of

bidders.

• Bidders do not know other bidders’ valuations.

• Let θ0 = (α0′,β0′)′ ∈ Θ.
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• Bidders are risk neutral, and form their bids under the assumption that all bidders

play a symmetric Bayesian Nash strategy.

The problem for the econometrician is to estimate θ0, which allows prediction of the

distribution of bids and of the selling price, as a function of q and B.

• Under the above assumptions, the winning bid (for 2 or more bidders, and as-

suming the item is sold) is

y = E
{

max
[
v(B−1:B),r0

]
|v(B:B)

}

where v(1:B) ≤ v(2:B) ≤ ...≤ v(B−1:B) ≤ v(B:B) are the order statistics of v1, ...,vB,

which are B random draws from f (v|q,θ0).

– Intuitively, a bidder will bid the value of the order statistic that is less than

his/her private value, since this bid is the lowest bid that can be expected to

win, conditional on the winning bid being below the private valuation.

• Let p(y|r0,B,q,θ) be the density of the winning bid. This density is ordinary

except at y = 0 and y = r0, where there are concentrations of probability (atoms).

• In general,

p(y|r0,B,q,θ)≡ p(y|x,θ)

is not calculable.

• However, p(y|x,θ) is easily simulable, given θ.

• Indirect inference would supply some tractable pseudo-density f (y|x,λ) as the

score generator in place of p(y|x,θ), and would form moment conditions as

above.
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• The data necessary to estimate this model are simply the characteristics of the

good, the reservation price, and the winning bid. A more efficient (and compli-

cated) model would use all of the bid information, were it available.

• A potential application of this sort of model would be the supply of generation

of electrical power: generating companies in Norway and the UK bid daily for

the price at which power is supplied to the electrical network.

23.6 Application II: estimation of stochastic differential equations

It is often convenient to formulate theoretical models in terms of differential equations,

and when the observation frequency is high (e.g., weekly, daily, hourly or real-time) it

may be more natural to adopt this framework for econometric models of time series.

The most common approach to estimation of stochastic differential equations is to

“discretize” the model, as above, and estimate using the discretized version. However,

since the discretization is only an approximation to the true discrete-time version of

the model (which is not calculable), the resulting estimator is in general biased and

inconsistent.

An alternative is to use indirect inference: The discretized model is used as the

score generator. That is, one estimates by QML to obtain the scores of the discretized

approximation:

yt − yt−1 = g(φ,yt−1)+h(φ,yt−1)εt

εt ∼ N(0,1)
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Indicate these scores by mn(θ, φ̂). Then the system of stochastic differential equations

dyt = g(θ,yt)dt +h(θ,yt)dWt

is simulated over θ, and the scores are calculated and averaged over the simulations

m̃n(θ, φ̂) =
1
N

N

∑
i=1

min(θ, φ̂)

θ̂ is chosen to set the simulated scores to zero

m̃n(θ̂, φ̂) ≡ 0

(since θ and φ are of the same dimension).

This method requires simulating the stochastic differential equation. There are

many ways of doing this. Basically, they involve doing very fine discretizations:

yt+τ = yt +g(θ,yt)+h(θ,yt)ηt

ηt ∼ N(0,τ)

By setting τ very small, the sequence of ηt approximates a Brownian motion fairly

well.

This is only one method of using indirect inference for estimation of differential

equations. There are others (see Gallant and Long, 1995 and Gourieroux et. al.).

Use of a series approximation to the transitional density as in Gallant and Long is

an interesting possibility since the score generator may have a higher dimensional

parameter than the model, which allows for diagnostic testing. In the method described
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above the score generator’s parameter φ is of the same dimension as is θ, so diagnostic

testing is not possible.

23.7 Application III: estimation of a multinomial probit panel data

model

For selection of one alternative out of G, let the vector y be G-dimensional (high

enough so that direct probit is not feasible). Only one element is equal to 1, indi-

cating the alternative chosen, while the rest are zero. The choice depends upon the

characteristics of the alternatives, xi, i = 1,2, ...,G. While one can estimate a multi-

nomial probit (MNP) model using SML or MSM, one looses the diagnostic testing

possibilities of indirect inference.

For example, the score generator could be a multinomial logit model (MNL) model,

characterized by choice probabilities of the form

Pr(yi = 1) =
exp(x′iβ)

∑G
j=1 exp(x′jβ)

.

These are tractable for any dimension G. The reason the multinomial probit is to be

preferred over the multinomial logit is that the MNL suffers from a problem of lack

of “independence of irrelevant alternatives”. For example, if we have a problem of

choice between travel to work by car and red bus, the probabilities of selection of

these modes of transit are PC and PRB. According to the MNL model, if we add the

possibility of travel by blue bus, PC will drop, since the numerator doesn’t change but

the denominator does. The MNP model is more satisfactory since the covariance ma-

trix Ω of the errors (see equation [47]) allows for complementarity and substitutability

of alternatives).
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24 Thanks

The following is a list of people who have contributed to these notes in some form.

A number of IDEA students - error corrections

Montserrat Farell - error corrections

25 The GPL

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite

330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute ver-

batim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and

change it. By contrast, the GNU General Public License is intended to guarantee your

freedom to share and change free software–to make sure the software is free for all its

users. This General Public License applies to most of the Free Software Foundation’s

software and to any other program whose authors commit to using it. (Some other Free

Software Foundation software is covered by the GNU Library General Public License

instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our Gen-

eral Public Licenses are designed to make sure that you have the freedom to distribute

copies of free software (and charge for this service if you wish), that you receive source

code or can get it if you want it, that you can change the software or use pieces of it in

new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you

these rights or to ask you to surrender the rights. These restrictions translate to certain
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responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,

you must give the recipients all the rights that you have. You must make sure that they,

too, receive or can get the source code. And you must show them these terms so they

know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer

you this license which gives you legal permission to copy, distribute and/or modify the

software.

Also, for each author’s protection and ours, we want to make certain that everyone

understands that there is no warranty for this free software. If the software is modified

by someone else and passed on, we want its recipients to know that what they have

is not the original, so that any problems introduced by others will not reflect on the

original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to

avoid the danger that redistributors of a free program will individually obtain patent

licenses, in effect making the program proprietary. To prevent this, we have made it

clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPY-

ING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice

placed by the copyright holder saying it may be distributed under the terms of this

General Public License. The "Program", below, refers to any such program or work,

and a "work based on the Program" means either the Program or any derivative work

under copyright law: that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another language. (Here-
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inafter, translation is included without limitation in the term "modification".) Each

licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this

License; they are outside its scope. The act of running the Program is not restricted,

and the output from the Program is covered only if its contents constitute a work based

on the Program (independent of having been made by running the Program). Whether

that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code

as you receive it, in any medium, provided that you conspicuously and appropriately

publish on each copy an appropriate copyright notice and disclaimer of warranty; keep

intact all the notices that refer to this License and to the absence of any warranty; and

give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at

your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus

forming a work based on the Program, and copy and distribute such modifications or

work under the terms of Section 1 above, provided that you also meet all of these

conditions:

a) You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a whole

at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you

must cause it, when started running for such interactive use in the most ordinary way,

to print or display an announcement including an appropriate copyright notice and a
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notice that there is no warranty (or else, saying that you provide a warranty) and that

users may redistribute the program under these conditions, and telling the user how to

view a copy of this License. (Exception: if the Program itself is interactive but does not

normally print such an announcement, your work based on the Program is not required

to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections

of that work are not derived from the Program, and can be reasonably considered

independent and separate works in themselves, then this License, and its terms, do not

apply to those sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based on the Program,

the distribution of the whole must be on the terms of this License, whose permissions

for other licensees extend to the entire whole, and thus to each and every part regardless

of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to

work written entirely by you; rather, the intent is to exercise the right to control the

distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the

Program (or with a work based on the Program) on a volume of a storage or distribution

medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section

2) in object code or executable form under the terms of Sections 1 and 2 above provided

that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third
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party, for a charge no more than your cost of physically performing source distribution,

a complete machine-readable copy of the corresponding source code, to be distributed

under the terms of Sections 1 and 2 above on a medium customarily used for software

interchange; or,

c) Accompany it with the information you received as to the offer to distribute

corresponding source code. (This alternative is allowed only for noncommercial dis-

tribution and only if you received the program in object code or executable form with

such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi-

fications to it. For an executable work, complete source code means all the source code

for all modules it contains, plus any associated interface definition files, plus the scripts

used to control compilation and installation of the executable. However, as a special

exception, the source code distributed need not include anything that is normally dis-

tributed (in either source or binary form) with the major components (compiler, kernel,

and so on) of the operating system on which the executable runs, unless that compo-

nent itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from

a designated place, then offering equivalent access to copy the source code from the

same place counts as distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as

expressly provided under this License. Any attempt otherwise to copy, modify, sub-

license or distribute the Program is void, and will automatically terminate your rights

under this License. However, parties who have received copies, or rights, from you un-

der this License will not have their licenses terminated so long as such parties remain

in full compliance.
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5. You are not required to accept this License, since you have not signed it. How-

ever, nothing else grants you permission to modify or distribute the Program or its

derivative works. These actions are prohibited by law if you do not accept this Li-

cense. Therefore, by modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and all its terms and

conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the

recipient automatically receives a license from the original licensor to copy, distribute

or modify the Program subject to these terms and conditions. You may not impose any

further restrictions on the recipients’ exercise of the rights granted herein. You are not

responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement

or for any other reason (not limited to patent issues), conditions are imposed on you

(whether by court order, agreement or otherwise) that contradict the conditions of this

License, they do not excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this License and any

other pertinent obligations, then as a consequence you may not distribute the Program

at all. For example, if a patent license would not permit royalty-free redistribution of

the Program by all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to refrain entirely

from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular

circumstance, the balance of the section is intended to apply and the section as a whole

is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other

property right claims or to contest validity of any such claims; this section has the sole
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purpose of protecting the integrity of the free software distribution system, which is

implemented by public license practices. Many people have made generous contri-

butions to the wide range of software distributed through that system in reliance on

consistent application of that system; it is up to the author/donor to decide if he or she

is willing to distribute software through any other system and a licensee cannot impose

that choice.

This section is intended to make thoroughly clear what is believed to be a conse-

quence of the rest of this License. 8. If the distribution and/or use of the Program is

restricted in certain countries either by patents or by copyrighted interfaces, the orig-

inal copyright holder who places the Program under this License may add an explicit

geographical distribution limitation excluding those countries, so that distribution is

permitted only in or among countries not thus excluded. In such case, this License

incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the

General Public License from time to time. Such new versions will be similar in spirit

to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a

version number of this License which applies to it and "any later version", you have

the option of following the terms and conditions either of that version or of any later

version published by the Free Software Foundation. If the Program does not specify

a version number of this License, you may choose any version ever published by the

Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose

distribution conditions are different, write to the author to ask for permission. For

software which is copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this. Our decision will be
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guided by the two goals of preserving the free status of all derivatives of our free

software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE

IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE

COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM

"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-

PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-

TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED

TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY

WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-

TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-

ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT

NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE

OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
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If you develop a new program, and you want it to be of the greatest possible use to

the public, the best way to achieve this is to make it free software which everyone can

redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to

the start of each source file to most effectively convey the exclusion of warranty; and

each file should have at least the "copyright" line and a pointer to where the full notice

is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright

(C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software Founda-

tion; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-

NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place,

Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in

an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision comes

with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free soft-

ware, and you are welcome to redistribute it under certain conditions; type ‘show c’

for details.
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The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate

parts of the General Public License. Of course, the commands you use may be called

something other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu

items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,

if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample;

alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovi-

sion’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into pro-

prietary programs. If your program is a subroutine library, you may consider it more

useful to permit linking proprietary applications with the library. If this is what you

want to do, use the GNU Library General Public License instead of this License.
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